

4.25 Gbps 3.3V Low Noise Transimpedance Amplifier

Preliminary Technical Data

ADN2882

FEATURES

Technology: high performance SiGe Bandwidth: 3.2 GHz minimum Input noise current density: 10 pA√Hz

Optical sensitivity: -22 dBm

Differential transimpedance: 4000 V/A

Power dissipation: 75 mW

Differential output swing: 250 mV p-p Input current overload: +3.25 dBm

Output resistance: 50Ω side

RSSI voltage and current ratio: 0.8V/mA

Low-freq cutoff: 15 kHz

On-chip PD filter: $R_F = 200 \Omega C_F = 20 pF$

Die size: 0.7 mm \times 1.2 mm

APPLICATIONS

4.25 Gbps optical modules
SFF-8472 compliant receivers
PIN/APD-TIA receive optical subassembly
SONET/GbE/FC optical receivers, transceivers, transponders

PRODUCT DESCRIPTION

The ADN2882 is a compact, high performance 3.3 V power supply SiGe transimpedance amplifier (TIA) optimized for small form factor 4.25 Gbps metro-access, Ethernet PIN/APD-TIA modules and $1\times/2\times/4\times$ Fibre channel receiver applications and meets OC48 SR/IR sensitivity requirements. The ADN2882 is a single-chip solution for detecting photodiode current with a differential output voltage. The ADN2882 features low input referred noise current of 600 nA enabling -22 dBm sensitivity; 3.2 GHz minimum bandwidth enables up to 4.25 Gbps operation; +3.25 dBm nominal operation at 10dB extinction ratio. RSSI output signal proportional to average input current is available for monitoring and alarm generation. To facilitate assembly in small form factor packages such as a TO-46 or TO-56 header, the ADN2882 integrates the photodiode filter network on chip and features 15 kHz low frequency cutoff without any external components. The ADN2882 chip area is less than 1 mm², operates with a 3.3 V power supply and is available in die form.

FUNCTIONAL BLOCK DIAGRAM

Figure 1. ADN2882 Block Diagram

ADN2882

Preliminary Technical Data

TABLE OF CONTENTS

Electrical Specifications	Pad Layout	6
Absolute Maximum Ratings4	•	
ESD Caution		
Pad Description5	Assembly Recommendations	/

REVISION HISTORY

07/04—Revision PrB July 27 2004

09/04 - Revision PrC Sept 30 2004: spec changes

11/04 - Revision PrD: RSSI added in

ELECTRICAL SPECIFICATIONS

Parameter	Conditions ¹	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE			-		
Bandwidth (BW) ²	-3 dB	3.3	3.8		GHz
Total Input RMS Noise (I _{RMS}) ²	DC to 4.0 GHz		520	TBD	nA
Small Signal Transimpedance (Z _T)	100MHz	2800	3800	4800	V/A
Low Frequency Cutoff	$I_{IN} = 10\mu A$		15		kHz
	$I_{IN} = 500 \mu A$		TBD		kHz
Output Return Loss	DC to 4.25GHz, differential		-20	-12	dB
Input Overload Current ³	Pavg	TBD	3.25		dBm
Maximum Output Swing	pk-pk diff, $I_{IN,PK-PK} = 2.0 \text{ mA}$	180	250	350	mV
Output Data Transition Time	20% to 80% rise/fall time $I_{IN,PK-PK} = 2.5 \text{ mA}$		40		ps
PSRR	<10 MHz		-40		dB
Group Delay Variation	50 MHz to 1.0 GHz		TBD		ps
Transimpedance Ripple	50 MHz to 1.0 GHz		TBD		dB
Total Jitter	$10 \ \mu A < I_{IN,PK-PK} \le 100 \ \mu A$		TBD	TBD	ps
	$100 \ \mu A < I_{IN,PK-PK} \le 2.0 \ \mu A$		TBD	TBD	ps
Deterministic Jitter	$10 \mu A < I_{IN,PK-PK} \leq 100 \mu A$		2		ps
	$100 \ \mu A < I_{IN,PK-PK} \le 2.0 \ \mu A$		4		Ps
Linear Output Range	Pk-pk, < 1dB compression		TBD		mV
DC PERFORMANCE					
Power Dissipation	$I_{IN,AVE} = 0$	50	75	120	mW
Input Voltage			0.85		V
Output Common Mode Voltage	DC terminated to VCC		Vcc – 0.12		V
Output Impedance	Single-ended		50		Ω
PD FILTER Resistance	R _F		200		Ω
PD FILTER Capacitance	C_F		20		рF
RSSI Sensitivity	$I_{IN, AVE} = 0 \text{ uA to } 1 \text{ mA}$		0.8		V/mA
RSSI Offset	$I_{IN, AVE} = 0 uA$		TBD		mV

 $^{^1}$ Min/Max VCC = +3.3 V \pm 0.3 V, $T_a=-40^{\circ}C$ to +95°C; Typ V_{CC}= 3.3 V, $T_a=+25C$. 2 Photodiode capacitance $C_D=0.5pF\pm0.15pF$, photodiode resistance = 5 Ω . Load impedance = 50 Ω (each output, ac-coupled). 3 10 $^{-10}$ BER, 10 dB ER,

ADN2882

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage (V _{CC} to GND)	5 V
Maximum Input Current	10 mA
Storage Temperature Range	−65°C to +125°C
Operating Ambient Temperature Range	−40°C to +95°C
Maximum Junction Temperature	165°C
Die Attach Temperature (<60 seconds)	450°C

Stresses above those listed under Absolute Maximum Rating may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PAD DESCRIPTION

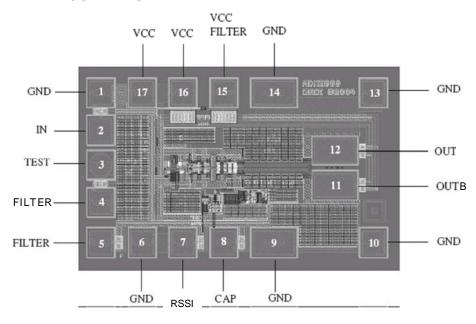


Table 3.

Pad No.	Pad Name	Function
1	GND	Ground (input return).
2	IN	Current input. Bond directly to PD anode.
3	TEST	Test probe Pad. Leave floating.
4	FILTER	Filter Output
5	FILTER	Filter Output
6	GND	Ground.
7	RSSI	Voltage Output (provides average input current reading)
8	CAP	Low Frequency setpoint. Connect with 1 nF capacitance to GND for < 15 kHz.
9	GND	Ground.
10	GND	Ground (output return).
11	OUTB	Negative Output. Drives 50 Ω termination (ac or dc termination).
12	OUT	Positive Output. Drives 50Ω termination (ac or dc termination).
13	GND	Ground (output return).
14	GND	Ground.
15	VCCFILTER	Filter Supply. Connect to V_{CC} to enable on-chip 200 Ω , 20 pf Filter.
16	VCC	3.3 V positive Supply. Recommended bypass to GND is 200 pF RF capacitor.
17	VCC	3.3 V positive Supply. Recommended bypass to GND is 200 pF RF capacitor.

PAD LAYOUT

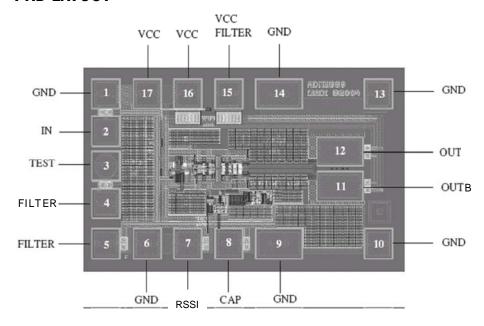


Figure 2.. Pad Layout

PAD COORDINATES

Table 4.

PAD#	PAD	X (um)	Y (um)
1	GND	-500	260
2	IN	-500	130
3	TEST	-500	10
4	FILTER	-500	-120
5	FILTER	-500	-260
6	GND	-350	-260
7	RSSI	-200	-260
8	CAP	-50	-260
9	GND	130	-260
10	GND	500	-260
11	OUTB	350	-60
12	OUT	350	60
13	GND	500	260
14	GND	130	260
15	VCCFILTER	-50	260
16	VCC	-200	260
17	VCC	-350	260

DIE INFORMATION

Die Size

 $0.7\text{mm} \times 1.2\text{mm}$

(edge-edge including 1mil scribe)

Die Thickness

10mils = 0.25mm

Passivation Openings

 $0.075 \text{ mm} \times 0.075 \text{ mm}$

(pads 1-8, 9, 10, 13, 15, 16, 17)

 $0.144mm \times 0.075mm$

(pads 9, 11, 12, 14)

Passivation Composition

5000Å Si₃N₄ (top)

+5000 Å SiO₂ (bot)

Pad Composition

Al/1%Cu

Backside Contact

ASSEMBLY RECOMMENDATIONS

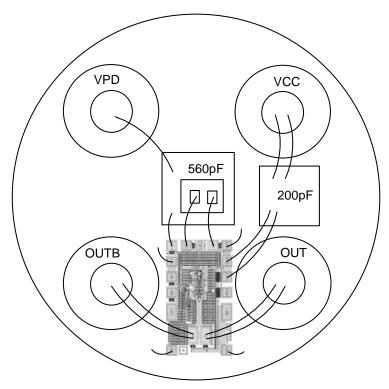


Figure 3. 5-Pin TO-46 with External Photodiode Supply V_{PD}

 $1\times$ Vendor-Specific (0.3 mm \times 0.3 mm) 4.25 Gbps Photo Diode

 $1\times$ ADN2882 (0.7 mm \times 1.2 mm) Analog Devices SiGe 4.25 Gbps Transimpedance Amplifier

 1×200 pF RF single-layer capacitor

 $1 \times 560 pF$ RF Single-layer capacitor

Notes

Minimize all GND bond wire lengths

Minimize IN, OUT and OUTB bond wire lengths

Maintain symmetry between IN and OUT/OUTB bond wires

ASSEMBLY RECOMMENDATIONS

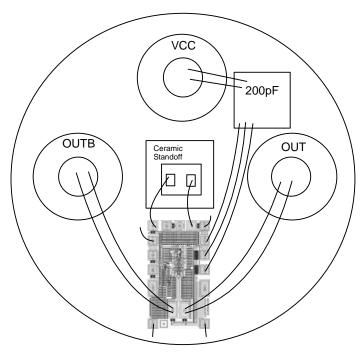


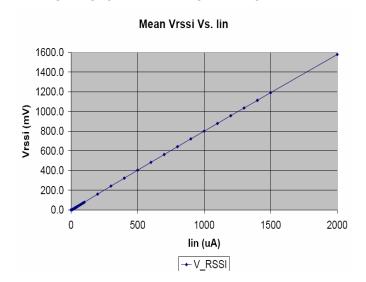
Figure 4. Recommended Layout for 4 pin TO-46

 $1\times$ Vendor-Specific (0.3 mm \times 0.3 mm) 4.25 Gbps Photo Diode

 $1\times$ ADN2882 (0.7 mm \times 1.2 mm) Analog Devices SiGe 4.25 Gbps Transimpedance Amplifier

 1×200 pF RF single-layer capacitor

1× ceramic standoff


Notes

Minimize all GND bond wire lengths

Minimize IN, OUT and OUTB bond wire lengths

Maintain symmetry between IN and OUT/OUTB bond wires

TYPICAL SIGNAL PERFORMANCE

ADN2882

ORDERING GUIDE

Model	Temperature	Package Description	Package Option
ADN2882XCHIPS-WP	-40°C to 95°C	NA	Tested Die