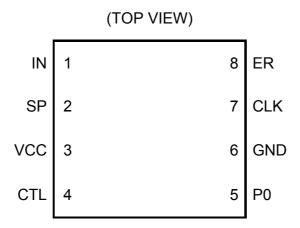


AA1700

PRELIMINARY

Constant Current White LED driver


OVERVIEW

The AA1700 is a high frequency boost DC/DC converter with constant current output that drives white LEDs or similar. The LED current is set with the external resistor. Soft start circuitry prevents excessive current drawn from the supply during power on. Any number of LEDs can be connected in series as long as the summed forward voltages do not lead to exceed the specified operating output voltage range. This IC works with a wide operating supply range (1.8V to 15V) and low current consumption, is optimal for use in high-efficiency white LED driver.

FEATURES

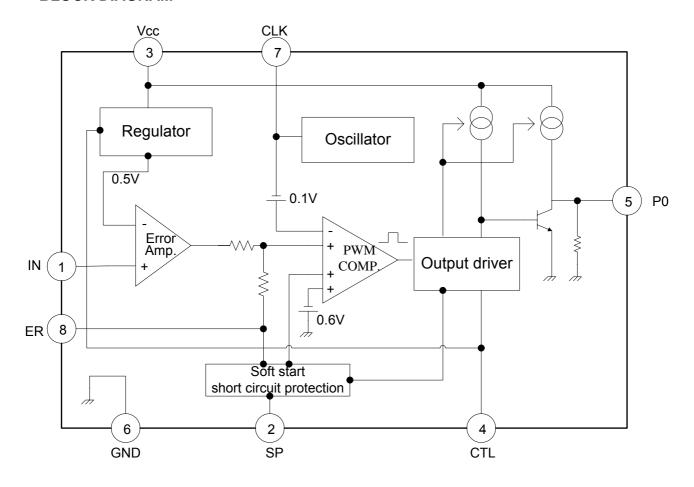
- Drives Up to 8 LEDs in Series.
- Second or more string of LEDs can be added.
- Low current consumption: Typically 5.5 mA in operation, 1 µA or less in stand-by.
- PWM mode operation of the boost circuit (frequency range: 10 kHz to 1 MHz).
- Incorporates a soft start circuit and adjustable soft start time.
- Timer latch LED short-circuit protection circuit (SP).
- On/off control function.
- Available in an 8-pin TSSOP or SOP package.

PIN Configuration

APPLICATIONS

- LCD Bias Supplies
- White LED Backlighting
- · Handheld Devices
- Digital Cameras
- Portable Applications

AA1700


PRELIMINARY

Constant Current White LED driver

PIN DESCRIPTIONS

Pin No.	Symbol	I/O	Description	
1	IN	I	Output voltage feedback pin	
2	SP	_	Soft start and short circuit protection setting	
3	Vcc	_	Power supply pin	
4	CTL	I	ON/OFF control pin	
5	P0	0	Dutput driver pin	
6	GND	_	Ground pin	
7	CLK	_	Internal PWM frequency setting pin	
8	ER	0	Error amplifier output pin	

BLOCK DIAGRAM

AA1700

PRELIMINARY

Constant Current White LED driver

ABSOLUTE MAXIMUM RATINGS

 $(Ta = +25^{\circ}C)$

Parameter	Symbol	Condition		Unit	
Farameter	Syllibol	Condition	Min Max		
Power supply voltage	Vcc		_	16	V
Output source current	l _{O+}	_	_	– 50	mA
Output sink current	lo-		_	50	mA
Allowable dissipation	P□	Ta ≤ +25° C	_	430*	mW
Operating temperature	Тор	_	-30	+85	° C
Storage temperature	T _{stg}		-55	+125	° C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING RANGE

 $(Ta = +25^{\circ} C)$

Parameter	Symbol		Unit			
Farameter	Symbol	Min	Тур	Max	Oilit	
Power supply voltage	Vcc	1.8	_	15	V	
Error amplifier input voltage	Vı	-0.2	_	1.0	V	
CTL pin input voltage	Vctl	-0.2	_	Vcc	V	
Output source current	lo+	-40	_	_	mA	
Output sink current	lo-	_	_	40	mA	
SP pin capacitance	Сре	_	0.1	_	μF	
Phase compensation capacitance	СР	_	0.1	_	μF	
Output current setting resistance	Rв	150	390	5000		
Timing resistance	R⊤	1.0	3.0	10.0	kΩ	
Timing capacitance	Ст	100	270	10000	pF	
Oscillation frequency	fclk	10	500	1000	kHz	
Operating temperature	Тор	-30	+25	+85	° C	

AA1700

PRELIMINARY

Constant Current White LED driver

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2 \text{ V}, \text{ Ta} = +25^{\circ} \text{ C})$

Pare	ameter	Symbol	ool Condition		Value		
Faic	ametei	Symbol	Condition	Min	Тур	Max	Unit
Circuit to prevent malfunction at low	Reset voltage	VR		_	-	0.9	V
input voltage (U.V.L.O.)	Threshold voltage	V _{тн}	_	1.1	1.3	1.5	V
	Charging current	Ics	V _{SP} = 0 V	-1.5	-1.0	-0.7	μΑ
Soft start	Voltage at soft start completion	Vts	_	0.7	0.8	0.9	V
Short circuit	Charging current	Ісрс	V _{SP} = 0 V	-1.5	-1.0	-0.7	μΑ
detection (S.C.P.)	Threshold voltage	V _{tPC}	_	0.7	8.0	0.9	V
	Oscillation frequency	fclk	$R_T = 3.0 \text{ k}\Omega$, $C_T = 270 \text{ pF}$	400	500	600	kHz
Sawtooth wave oscillator (CLK)	Frequency input stability	fd∨	Vcc = 2 V to 15 V	_	2	10	%
	Frequency variation with temperature	f d⊤	T_{dT} Ta = -30°C to +85°C		5	_	%
	Input threshold voltage	VT	V _{ER} = 450 mV		500	520	mV
	V _⊤ input stability	V _{TdV}	Vcc = 2 V to 15 V	_	5	20	mV
	V _⊤ variation with temperature	V _{TdT}	Ta = -30°C to +85°C	_	1	_	%
	Input bias current IB		V _{IN} = 0 V	-1.0	-0.2	1.0	μА
	Voltage gain Av		_	70	100	145	V/V
	Frequency bandwidth	BW	$A_V = 0 dB$	_	6	_	MHz
Error amplifier	Maximum output	V _{OM+}	_	0.78	0.87	_	V
	voltage range V _{OM} –			_	0.05	0.2	V
	Output source current	Іом+	V _{ER} = 0.45 V	_	-40	-24	μΑ
	Output sink current	Іом –		24	40		μΑ
Idle period adjustment Maximum duty cycle section		t DUTY	R_T = 3.0 k Ω , C_T = 270 pF V_{ER} = 0.8 V	65	75	85	%

AA1700

PRELIMINARY

Constant Current White LED driver

(Continued)

Parameter		Symbol Condition		Value			Unit
				Min	Тур	Max	Jiii
		V _{OH1}	$R_B = 390 \Omega$, $I_O = -15 \text{ mA}$	1.0	1.2	_	V
		V он2	$R_B = 750 \ \Omega$, $V_{CC} = 1.8 \ V$ $I_O = -10 \ mA$	0.8	1.0	_	٧
	Output voltage	V _{OL1}	$R_B = 390 \Omega$, $I_O = 15 \text{ mA}$	_	0.1	0.2	V
Output section		V _{OL2}	$R_B = 750 \Omega$, $V_{CC} = 1.8 V$ $I_O = 10 mA$	_	0.1	0.2	٧
	Output source current	lo+	$R_B = 390 \Omega$, $V_O = 0.9 V$	_	-30	-20	mA
	Output sink current	l o-	$R_B = 390 \Omega$, $V_O = 0.3 V$	30	60		mA
	Pull down resistance	Ro	_	20	30	40	kΩ
	Pin voltage	Vctl	R _B = 390 Ω	0.2	0.3	0.4	V
Output current	Input off condition	loff		-20	_	0	μА
setting section/ Control section	Input on condition	Іол	_	_	_	-45	μΑ
	Pin current range IcT			-1.8	_	-0.1	mA
Entire device	Stand-by current Iccs		CTL pin open or Vcc	_	_	1	μΑ
	Average supply current	Icc	R _B = 390 Ω	_	5.5	9.3	mA

HOW TO SET THE TIME CONSTANT FOR SOFT START AND SHORT CIRCUIT DETECTION

1. Soft Start

A soft start function, which gradually increases the width of the output pulses at power on, will be applied if a capacitor is connected to the SP pin. This can prevent rush currents and overshoot when the power supply is turned on.

Soft start time can be measured by the following equation. (The time until the output ON duty reaches approximately 50%)

$$t_{S}[s] = 0.35 \times C_{PE}[uF]$$

2. Timer Latch Short Circuit Protection

When the load conditions suddenly change due to load effect, the short-circuit protection comparator outputs the high-level signal (V_{OM}) and the capacitor C_{PE} connected to the SP terminal starts charging. When the external capacitor C_{PE} has been charged to approximately 0.8V, the latch circuit is set, the output terminal is fixed to low level, and the dead-time is set to 100%. However, the latch circuit is not reset unless the power for the latch circuit is turned off or restarted by the on/off control.

· Short circuit detection time

$$t_{PE}$$
 [s] = $0.8 \times C_{PE}$ [uF]

AA1700

PRELIMINARY

Constant Current White LED driver

FUNCTIONAL DESCRIPTION

1. Switching Regulator Function

(1) Sawtooth wave oscillator

This circuit generates a triangular wave like sawtooth with a peak of 0.8V ($V_{\rm CLKH}$) and a trough of 0.1V ($V_{\rm CLKL}$) using a capacitor (for the time constant) and resistor connected to the CLK pin (pin 7). The oscillator frequency can be set to any value by selecting appropriate values for the external capacitor and resistor, C_T and R_T . This oscillator can provide a frequency in the range 10 kHz to 1 MHz.

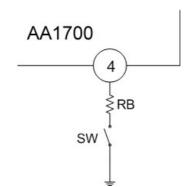
$$f_{CLK} = \frac{-1}{C_T \times R_T \times \ln \frac{V_{CLKL}}{V_{CLKH}}} = 0.48 \times \frac{1}{C_T \times R_T}$$
 [HZ]

(2) Error amplifier

This error amplifier detects and amplifies the DC-DC converter output voltage, and inputs that signal to a PWM comparator. The 0.5 V internal reference voltage is applied to the non-inverting input. Arbitrary gain and phase compensation can be connected by inserting a resistor and capacitor in series between the error amplifier output pin (pin 8) and the inverting input pin (pin 1).

(3) PWM comparator

The voltage comparator has one inverting and three non-inverting inputs. The comparator is a voltage/pulse width converter that controls the on-period of the output pulse according to its input voltage. The output transistors are turned on during periods when the CLK pin (pin 7) triangular waveform is lower than the error amplifier output voltage, soft start setting voltage, and idle period setting voltage.

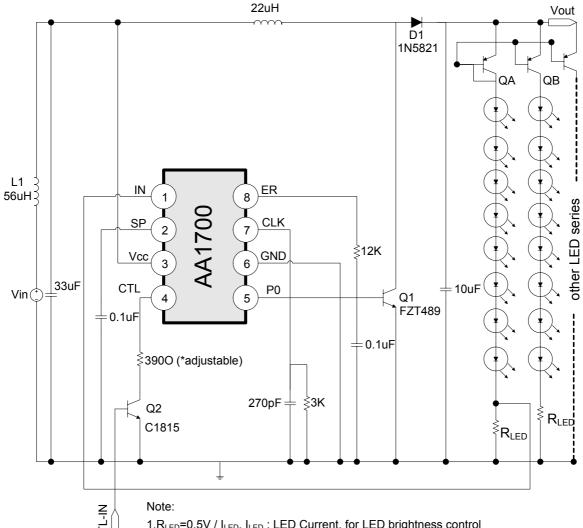

(4) Output driver

The output circuit has a totem pole structure. A constant-current source output with line regulation can be set up at an arbitrary voltage by connecting a current setting resistor to the CTL pin (pin 4).

2. Power Supply On/Off Function

Stand-by mode (supply current 1 μ A or less) can be set by connecting the CTL pin (pin 4) to Vcc or by making the pin open circuit.

SW	Mode		
OFF	Stand-by mode		
ON	Operating mode		



AA1700

PRELIMINARY

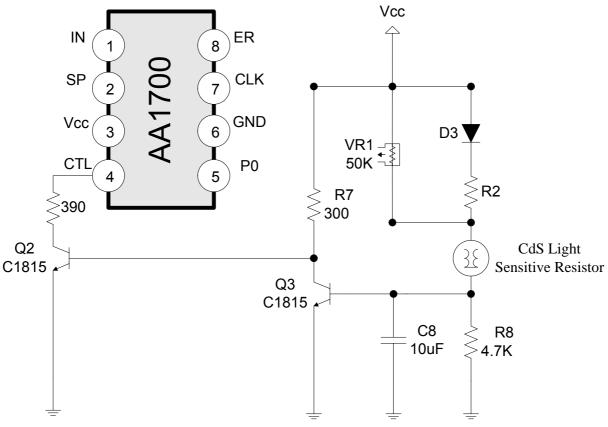
Constant Current White LED driver

TYPICAL APPLICATION EXAMPLE

- $$\label{eq:leden} \begin{split} 1.R_{\text{LED}} = &0.5 \text{V / I}_{\text{LED}}, \text{ I}_{\text{LED}} : \text{LED Current, for LED brightness control} \\ \text{where } 0.5 \text{V is the feedback reference voltage and} \\ \text{I}_{\text{LED}} = 20 \text{mA} \left(R_{\text{LED}} = 25\right) \text{ for typical application} \end{split}$$
- 2.Output voltage Vout is given by Vout=n * Vf + 0.5V where Vf : LED forward voltage drop
 - n : Number of LEDs in series connection
- 3. The sample described above is an inductive-boost driver, so it should follow the following equation.
 - $V_{IN} < V_{OUT} + V_{D1}$, where V_{D1} is forward voltage drop of diode D1.
- 4.To avoid some LEDs are damaged and conduce to high current of damaged LED series, the constant current control should be Included by QA, QB, etc. .

7

5. The chock Inductor (L1) Is for noise filter.



AA1700

PRELIMINARY

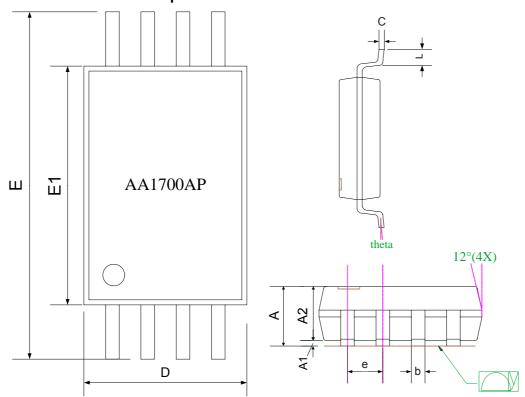
Constant Current White LED driver

CDS Control for IR LED

Note:

1.Light striking the surface of the Cds causes a decrease in resistance, while darkness produces a higher resistance. When the light is bright, Q3 is on and Q2 is off, AA1700 will enter stand-by mode and there is no output current provided. When the light is dark, Q3 is off and Q2 is on, AA1700 will output current and driver the IR LEDs. If the light Is gray, the Q2 and Q3 will enter active mode, the impedance of Cds will decide the collector current of Q3 and also Impact on the Internal impedance of Q2, so the driving current can be controlled.

2.VR1 is for light sensitive control, the value will decide how darkness of the light source the IR LEDs will brighten.


AA1700

PRELIMINARY

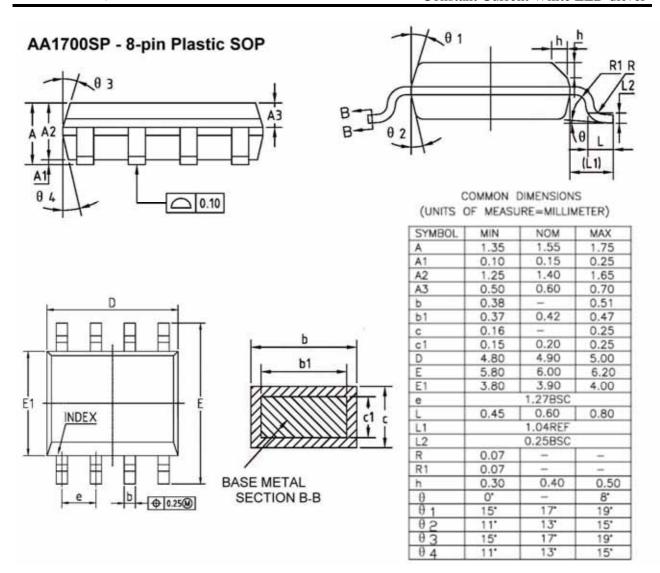
Constant Current White LED driver

PACKAGE DIMENSIONS

AA1700AP - 8-pin Plastic TSSOP

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
STWIDOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A			1.20			0.048	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
e		0.65			0.026		
L	0.45	0.60	0.75	0.018	0.024	0.030	
у			0.10			0.004	
theta	0°		8°	0°		8°	

NOTE


- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS
- 2. TOLERANCE +/-0.1 mm UNLESS OTHERWISE SPECIFIED
- 3. COPLANARITY: 0.1 mm
- ${\tt 4.}$ CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 5. FOLLOWED FROM JEDEC MO-153

AA1700

PRELIMINARY

Constant Current White LED driver

NOTES ON USE

- The information described herein is subject to change without notice.
- The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- •The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Take account of common impedance when designing the earth line on a printed wiring board.