8 Q3

<sup>C100</sup>/54/7492A<sup>≪</sup> √54LS/74LS92 <sup>C</sup>/C08∂

 CP1
 14
 CP0

 NC 2
 13
 NC

 NC 3
 12
 Q0

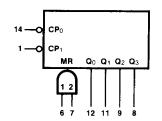
 NC 4
 11
 Q1

 Vcc 5
 10
 GND

 MR1
 6
 9
 Q2

MR<sub>2</sub> 7

**CONNECTION DIAGRAM** 


PINOUT A

**DIVIDE-BY-TWELVE COUNTER** 

**DESCRIPTION** — The '92 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-six. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

#### **ORDERING CODE:** See Section 9

|                    | PIN | COMMERCIAL GRADE                                                                         | MILITARY GRADE                                                                                 | PKG  |  |
|--------------------|-----|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------|--|
| PKGS               | OUT | $V_{CC} = +5.0 \text{ V } \pm 5\%,$<br>$T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ | $V_{CC} = +5.0 \text{ V} \pm 10\%,$<br>$T_A = -55^{\circ} \text{ C to} +125^{\circ} \text{ C}$ | TYPE |  |
| Plastic<br>DIP (P) | А   | 7492APC, 74LS92PC                                                                        |                                                                                                | 9A   |  |
| Ceramic<br>DIP (D) | А   | 7492ADC, 74LS92DC                                                                        | 5492ADM, 54LS92DM                                                                              | 6A   |  |
| Flatpak<br>(F)     | А   | 7492AFC, 74LS92FC                                                                        | 5492AFM, 54LS92FM                                                                              | 31   |  |



LOGIC SYMBOL

V<sub>CC</sub> = Pin 5 GND = Pin 10 NC = Pins 2, 3, 4, 13

### INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES                         | DESCRIPTION                                      | <b>54/74 (U.L.)</b><br>HIGH/LOW | 54/74LS (U.L.)<br>HIGH/LOW |  |
|-----------------------------------|--------------------------------------------------|---------------------------------|----------------------------|--|
| CP₀                               | ÷2 Section Clock Input<br>(Active Falling Edge)  | 2.0/2.0                         | 0.125/1.5                  |  |
| CP <sub>1</sub>                   | ÷6 Section Clock Input<br>(Active Falling Edge)  | 3.0/3.0                         | 0.250/2.0                  |  |
| MR <sub>1</sub> , MR <sub>2</sub> | Asynchronous Master Reset Input<br>(Active HIGH) | 1.0/1.0                         | 0.5/0.25                   |  |
| Q <sub>0</sub>                    | ÷2 Section Output*                               | 20/10                           | 10/5.0<br>(2.5)            |  |
| Q <sub>1</sub> — Q <sub>3</sub>   | ÷6 Section Outputs                               | 20/10                           | 10/5.0 (2.5)               |  |

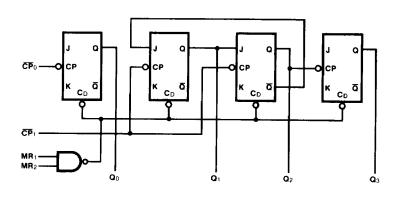
<sup>\*</sup>The Q<sub>0</sub> output is guaranteed to drive the full rated fan-out plus the CP<sub>1</sub> input.

**FUNCTIONAL DESCRIPTION** — The '92 is a 4-bit ripple type divide-by-twelve counter. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divideby-six section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The  $Q_0$  output of each device is designed and specified to drive the rated fan-out plus the  $\overline{CP}_1$  input of the device. A gated AND asynchronous Master Reset (MR1, MR2) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:

- A. Modulo 12, Divide-By-Twelve Counter The  $\overline{\mathbb{CP}}_1$  input must be externally connected to the Q<sub>0</sub> output. The  $\overline{\mathbb{CP}}_0$  input receives the incoming count and Q<sub>3</sub> produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The  $\overline{\text{CP}}_1$  input is used to obtain divide-by-three operation at the Q<sub>1</sub> and Q<sub>2</sub> outputs and divide-by-six operation at the Q<sub>3</sub> output.

#### MODE SELECTION TABLE

| RE<br>INPL      | SET<br>JTS      |                | out            | FPUT           | S              |  |
|-----------------|-----------------|----------------|----------------|----------------|----------------|--|
| MR <sub>1</sub> | MR <sub>2</sub> | Q <sub>0</sub> | Q <sub>1</sub> | Q <sub>2</sub> | Q <sub>3</sub> |  |
| Н               | Н               | L              | L              | L              | L              |  |
| L               | Н               | Count          |                |                |                |  |
| H               | L               | Count          |                |                |                |  |
| lı .            | 1               | Count          |                |                |                |  |


H = HIGH Voltage Level L = LOW Voltage Level

#### TRUTH TABLE

| COUNT | OUTPUT |                |                |                |  |  |
|-------|--------|----------------|----------------|----------------|--|--|
|       | Qο     | Q <sub>1</sub> | Q <sub>2</sub> | Q <sub>3</sub> |  |  |
| 0     | L      | L              | L              | L              |  |  |
| 1     | Н      | Ł              | L              | L              |  |  |
| 2     | L      | Н              | L              | L              |  |  |
| 3     | Н      | Н              | L              | L              |  |  |
| 4     | L      | L              | Н              | L              |  |  |
| 5     | Н      | Ļ              | Н              | L              |  |  |
| 6     | L      | L              | L              | Н              |  |  |
| 7     | Н      | L              | L              | Н              |  |  |
| 8     | L      | Н              | L              | Н              |  |  |
| 9     | Н      | Н              | L              | Н              |  |  |
| 10    | L      | L              | Н              | Н              |  |  |
| 11    | Н      | L              | Н              | Н              |  |  |

NOTE: Output Qo connected to CP1

#### **LOGIC DIAGRAM**



# DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER               | 54  | 54/74 |     | '4LS | UNITS | CONDITIONS                                     |
|--------|-------------------------|-----|-------|-----|------|-------|------------------------------------------------|
|        |                         | Min | Max   | Min | Max  |       | CONDITIONS                                     |
| ин     | Input HIGH Current, CPo |     | 1.0   |     | 0.2  | mA    | V <sub>CC</sub> = Max, V <sub>IN</sub> = 5.5 V |
| lін    | Input HIGH Current, CP1 |     | 1.0   |     | 0.4  | mA    | V <sub>CC</sub> = Max, V <sub>IN</sub> = 5.5 V |
| lcc    | Power Supply Current    |     | 39    |     | 15   | mA    | V <sub>CC</sub> = Max                          |

# AC CHARACTERISTICS: $V_{CC} = 5.0 \text{ V}$ , $T_A = 25^{\circ}\text{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL           |                                                        | 54/74                               | 54/74LS                | UNITS | CONDITIONS      |
|------------------|--------------------------------------------------------|-------------------------------------|------------------------|-------|-----------------|
|                  | PARAMETER                                              | $C_L = 15 pF$<br>$R_L = 400 \Omega$ | C <sub>L</sub> = 15 pF |       |                 |
|                  |                                                        | Min Max                             | Min Max                |       |                 |
| fmax             | Maximum Count Frequency, $\overrightarrow{CP_0}$ Input | 32                                  | 32                     | MHz   | Figs. 3-1, 3-9  |
| fmax             | Maximum Count Frequency, CP <sub>1</sub> Input         | 16                                  | 16                     | MHz   | Figs. 3-1, 3-9  |
| tplH<br>tpHL     | Propagation Delay<br>CP <sub>0</sub> to Q <sub>0</sub> | 16<br>18                            | 16<br>18               | ns    | Figs. 3-1, 3-9  |
| tpLн<br>tpнL     | Propagation Delay<br>CP <sub>0</sub> to Q <sub>3</sub> | 48<br>50                            | 48<br>50               | ns    | Figs. 3-1, 3-9  |
| tPLH<br>tPHL     | Propagation Delay<br>CP <sub>1</sub> to Q <sub>1</sub> | 16<br>21                            | 16<br>21               | ns    | Figs. 3-1, 3-9  |
| tplH<br>tpHL     | Propagation Delay<br>CP <sub>1</sub> to Q <sub>2</sub> | 16<br>21                            | 16<br>21               | ns    | Figs. 3-1, 3-9  |
| tplH<br>tpHL     | Propagation Delay<br>CP <sub>1</sub> to Q <sub>3</sub> | 32<br>35                            | 32<br>35               | ns    | Figs. 3-1, 3-9  |
| t <sub>PHL</sub> | Propagation Delay, MR to Qn                            | 40                                  | 40                     | ns    | Figs. 3-1, 3-17 |

### AC OPERATING REQUIREMENTS: V<sub>CC</sub> = 5.0 V, T<sub>A</sub> = 25°C

| SYMBOL             | PARAMETER                        | 54/74   | 54/74LS | UNITS | CONDITIONS |  |
|--------------------|----------------------------------|---------|---------|-------|------------|--|
|                    |                                  | Min Max | Min Max |       |            |  |
| t <sub>w</sub> (H) | CP <sub>0</sub> Pulse Width HIGH | 15      | 15      | ns    | Fig. 2.0   |  |
| tw (H)             | CP <sub>1</sub> Pulse Width HIGH | 30      | 30      | ns    | Fig. 3-9   |  |
| t <sub>w</sub> (H) | MR Pulse Width HIGH              | 15      | 15      | ns    | Fi- 0.17   |  |
| t <sub>rec</sub>   | Recovery Time, MR to CP          | 25      | 25      | ns    | Fig. 3-17  |  |