Am29821A - Am29826A

High-Performance Bus Interface Registers

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- High-speed parallel positive edge-triggered registers
 with D-type flip-flops
 - Noninverting CP-Y tpD = 6 ns typical
 - Inverting CP-Y tpD = 6 ns typical
- Buffered common Clock Enable (EN) and asynchronous Clear input (CLR)
- Three-state outputs glitch free during power-up and down: Outputs have Schottky clamp to ground
- IOL: 48 mA Commercial, 32 mA Military
- Metastable "Hardened" Registers
- Higher speed, lower power versions of the Am29821 – 826.

GENERAL DESCRIPTION

The Am29821A – 826A Series Bus Interface Registers are designed to eliminate the extra packages required to buffer existing registers, and provide extra data width for wider address/data paths or buses carrying parity. The Am29821A and Am29822A are buffered, 10-bit wide versions of the popular '374/'534 functions. The Am29823A and Am29824A are 9-bit wide buffered registers with Clock Enable (EN) and Clear (CLR) – ideal for parity bus

interfacing in high-performance microprogrammed systems. The Am29825A and Am29826A are 8-bit buffered registers with all the 9-bit controls plus multiple enables ($\overline{OE}_1, \overline{OE}_2, \overline{OE}_3$) to allow multisuser control of the interface, e.g., \overline{CS} , DMA, and RD/WR. They are ideal for use as an output port requiring high I_{OL}/I_{OH} .

All of the Am29800A high-performance interface family are designed for high-capacitance load drive capability.

*See following page for additional Block Diagrams.

Order #07138A

Advanced Micro Devices

Am29821A – Am29826A

32

 $D^* = D$ for the Am29825A, \overline{D} for the Am29826A

33

H = HIGH L = LOW

X = Don't Care

NC = No Change t = LOW-to-HIGH Transition Z = High Impedance

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to +150°C
Ambient Temperature with
Power Applied55 to +125°C
Supply Voltage to Ground Potential
Continuous0.5 V to +7.0 V
DC Voltage Applied to Outputs
for High Output State0.5 V to 5.5 V
DC Input Voltage0.5 V to +5.5 V
DC Output Current, into Outputs 100 mA
DC Input Current30 mA to +5.0 mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature, TA	0 to +70°C
Supply Voltage	+4.5 V to +5.5 V
Military (M) Devices	
Temperature, TC	
Supply Voltage	+ 4.5 V to + 5.5 V

Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description Test Conditions		Test Conditions			Description Test Conditions		. Max.	Units
	Output HIGH Voltage	V _{CC} ≕ Min.	I _{OH} = -15 mA	2.4		Volts			
V _{OH}		$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = −24 mA	2.0					
		V _{CC} = Min.	MIL, I _{OL} = 32 mA		0.5	Voits			
VOL	Output LOW Voltage $V_{CC} = Min.$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	COM'L, IOL = 48 mA		0.5	¥0115				
ViH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0		Volts			
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs			0.8	Volts			
VI	Input Clamp Voltage	V _{CC} = Min., I _{IN} = -18 mA			-1.2	Volts			
կլ	Input LOW Current	V _{CC} = Max., V _{IN} = 0.4 V			- 500	μA			
Чн	Input HIGH Current	V _{CC} = Max., V _{IN} = 2.7 V			50	μA			
1	Input HIGH Current	V _{CC} = Max., V _{IN} = 5.5 V			100	μA			
OZL	_ Output Off-State (High Impedance)		V _O = 0.4 V		- 50	μA			
lozh	Output Current	VOC = Max.	V _O = 2.7 V		50				
Isc	Output Short Circuit Current (Note 1)	V _{CC} = Max., V _{OUT} = 0 V		-75	- 250	mA			
OFF	Bus Leakage Current	V _{CC} = 0 V, V _{OUT} = 2.9 V			100	μA			
I _{CC} Supp	Supply Current (Note 2)	VNov	Over Temperature Range		(110	P			
		V _{CC} = Max. Outputs Open	+ 70°C		\sim] mA			
		ËN = LOW	+ 125°C		1]			

Notes: 1. Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second. 2. Clock input, CP, is HIGH after clocking in data to produce outputs = LOW.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description Te		COMMERCIAL		MILITARY		
		Test Conditions*	Min.	Max.	Min.	Max.	Units
1PHL	Propagation Delay Clock to Y; (OE - LOW)		3.5	7.5	3.5	9.0	ns
t _{PLH}			3.5	10.5	3.5	11.5	ns
ts	Data to CP Setup Time	CL = 50 pF R1 = 500 Ω R2 = 500 Ω	4		4		ns
ţн	Data to CP Hold Time		2		2		ns
ts	Enable (EN L) to CP Setup Time		4		4		ns
ts	Enable (EN _) to CP Setup Time		4		4		ns
tн	Enable (EN) Hold Time		0		0	\square	ns
t _{PHL}	Propagation Delay, Clear to Yi			15		15	
ts	Clear (CLR		7		7		ns
tpwn	Clock Pulse Width LOW		7		7		ns
tpwL			7		7		ns
tpwL	Clear (CLR = LOW) Pulse Width	-	7		7		ns
tzн	Output Enable Time OE L to Yi			10		10	ns
tzL				10		10	nş
tнz	Output Disable Time OE _ to Yi			8		10	ns
tLZ				8		10	ns

*See Test Circuit and Waveforms.