# Am29LS18

Quad D Register with Standard and Three-State Outputs

#### **DISTINCTIVE CHARACTERISTICS**

- Low-power Schottky version of the popular Am2918
  Source standard tetam pole outputs
- Four three-state outputs
- Four standard totem-pole outputs
- Four D-type flip-flops
- GENERAL DESCRIPTION

The Am29LS18 consists of four D-type flip-flops with a buffered common clock. Information meeting the set-up and hold requirements on the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock.

The same data as on the Q outputs is enabled at the threestate Y outputs when the "output control" ( $\overline{OE}$ ) input is LOW. When the  $\overline{OE}$  input is HIGH, the Y outputs are in the high-impedance state.

The Am29LS18 is a 4-bit, high-speed register intended for use in real-time signal processing systems where the

standard outputs are used in a recursive algorithm and the three-state outputs provide access to a data bus to dump the results after a number of iterations.

The device can also be used as an address register or status register in computers or computer peripherals.

Likewise, the Am29LS18 is also useful in certain display applications where the standard outputs can be decoded to drive LED's (or equivalent) and the three-state outputs are bus organized for occasional interrogation of the data as displayed.





03623A Refer to Page 13-1 for Essential Information on Military Devices Am29LS18

#### PIN DESCRIPTION

| Pin No. | Name | 1/0 | Description                                                                                                                                                                                                                                 |
|---------|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Di   | 1   | The four data inputs to the register.                                                                                                                                                                                                       |
|         | Qi   | 0   | The four data outputs of the register with standard totem-pole active pull-up outputs. Data is passed non-inverted                                                                                                                          |
|         | Yi   | 0   | The four three-state data outputs of the register. When the three-state outputs are enabled, data is passed non-<br>inverted. A HIGH on the "output control" input forces the Yi outputs to the high-impedance state.                       |
| 9       | CP   |     | CP Clock. The buffered common clock for the register. Enters data on the LOW-to-HIGH transition.                                                                                                                                            |
| 7       | ŌĒ   |     | $\overline{OE}$ Output Control. When the $\overline{OE}$ input is HIGH, the Y <sub>i</sub> outputs are in the high-impedance state. When the $\overline{OE}$ input is LOW, the TRUE register data is present at the Y <sub>i</sub> outputs. |

### FUNCTION TABLE

|                            | INPUTS      |     | Ουτι |                           |       |
|----------------------------|-------------|-----|------|---------------------------|-------|
| ŌĒ                         | CLOCK<br>CP | D   | q    | Y                         | NOTES |
| н                          | L           | X   | NC   | Z                         | 1     |
| н                          | н           | X   | NC   | Z<br>Z<br>Z<br>Z          | -     |
| н                          | t           | L   | L    | Z                         | -     |
| н                          | t t         | н   | н    | z                         | -     |
| L                          | t t         | L   | L    | L                         | -     |
| L                          | t           | н   | н    | н                         | -     |
| L                          | _           | -   | Ļ    | L                         | 1     |
| L                          | -           | -   | н    | н                         | 1     |
| L = LC<br>H = HI<br>X = Dc |             | t = |      | nge<br>HIGH t<br>Ipedance |       |

Note: 1. When OE is LOW, the Y output will be in the same logic state as the Q output.



#### ABSOLUTE MAXIMUM RATINGS

#### **OPERATING RANGES**

| Storage Temperature                           | Co   |
|-----------------------------------------------|------|
| Supply Voltage to Ground Potential            |      |
| Continuous0.5V to +7.0V                       | Mil  |
| DC Voltage Applied to Outputs For             | 1411 |
| High Output State0.5V to +V <sub>CC</sub> max |      |
| DC Input Voltage0.5V to +7.0V                 | Op   |
| DC Output Current, Into Outputs               | alit |
| DC Input Current30mA to +5.0mA                | and  |

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

| Commercial (C) Devices |                  |
|------------------------|------------------|
| Temperature            | 0°C to +70°C     |
| Supply Voltage         | +4.75V to +5.25V |

lilitary (M) Devices

| Temperature                            | 55°C to +125°C          |
|----------------------------------------|-------------------------|
| Supply Voltage                         | + 4.5V to + 5.5V        |
| Operating ranges define those limits o | ver which the function- |
| ality of the device is guaranteed.     |                         |

#### DC CHARACTERISTICS over operating range unless otherwise specified

| Parameters     | Description Test Conditions (Note 2)     |                                                                               |                               | Min                                   | Typ<br>(Note 1) | Max | Unite |       |       |
|----------------|------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|---------------------------------------|-----------------|-----|-------|-------|-------|
|                |                                          |                                                                               |                               |                                       | MIL             | 2.5 | 3.4   |       |       |
|                |                                          |                                                                               | Q, IOH 3                      | OH <b>=</b> - 660µA                   | COM'L           | 2.7 | 3.4   |       |       |
| VOH            | Output HIGH Voltage                      | V <sub>CC</sub> = MIN<br>V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub> |                               | MIL, IOH = -                          | 1.0mA           | 2.4 | 3.4   |       | Volts |
|                |                                          |                                                                               | Y                             | COM'L, IOH                            | = 2.6mA         | 2.4 | 3.4   |       |       |
|                |                                          |                                                                               |                               | 1 <sub>OL</sub> = 4.0mA               |                 |     |       | 0.4   |       |
| VOL            | Output LOW Voltage                       | $V_{CC} = MIN$                                                                |                               | t <sub>OL</sub> = 8.0mA               |                 |     |       | 0.45  | Volts |
|                |                                          | VIN = VIH or VIL                                                              |                               | I <sub>OL</sub> = 12mA                |                 |     |       | 0.5   | l     |
| VIH            | Input HiGH Level                         | Guaranteed input logical HIGH voltage for all inputs                          |                               |                                       |                 | 2.0 |       |       | Volts |
|                | _                                        | Guaranteed input logical LOW                                                  |                               | MIL                                   |                 |     | 0.7   |       |       |
| VIL            | Input LOW Level                          |                                                                               |                               | COM'L                                 |                 |     | 0.8   | Volts |       |
| VI             | Input Clamp Voltage                      | V <sub>CC</sub> = MIN, I <sub>IN</sub> =                                      | – 18m.                        | A                                     |                 |     |       | - 1.5 | Volts |
| ι <sub>μ</sub> | Input LOW Current                        | V <sub>CC</sub> = MAX, V <sub>IN</sub>                                        | $V_{CC} = MAX, V_{IN} = 0.4V$ |                                       |                 |     |       | -0.36 | mA    |
| цн.            | Input HIGH Current                       | VCC - MAX, VIN                                                                | = 2.7V                        |                                       |                 |     |       | 20    | μA    |
| 4              | Input HIGH Current                       | V <sub>CC</sub> = MAX, V <sub>IN</sub> = 7.0V                                 |                               |                                       |                 |     |       | 0.1   | mA    |
| lo             | Off-State (High-Impedance)               | V <sub>CC</sub> = MAX                                                         |                               | $V_{\rm O} = 0.4V$ $V_{\rm O} = 2.4V$ |                 |     |       | -20   |       |
|                | Output Current                           |                                                                               |                               |                                       |                 |     |       | 20    | μΑ    |
| ISC            | Output Short Circuit Current<br>(Note 3) | V <sub>CC</sub> = MAX                                                         |                               |                                       | - 15            |     | -85   | mA    |       |
| łcc            | Power Supply Current<br>(Note 4)         | V <sub>CC</sub> = MAX                                                         |                               |                                       |                 | 17  | 28    | mA    |       |

Notes: 1. Typical limits are at V<sub>CC</sub> = 5.0V, 25°C ambient and maximum loading.
 2. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.
 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
 4. I<sub>CC</sub> is measured with all inputs at 4.5V and all outputs open.

#### LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS



Note: Actual current flow direction shown.

## SWITCHING CHARACTERISTICS ( $T_A = +25^{\circ}C$ , $V_{CC} = 5.0V$ )

| Parameters | Description                      | Test Conditions | Min                                               | Тур | Max      | Units |          |
|------------|----------------------------------|-----------------|---------------------------------------------------|-----|----------|-------|----------|
|            |                                  |                 |                                                   |     | 18       | 27    | ns       |
|            | - Clock to Qi                    |                 |                                                   | 18  | 27       | ] 115 |          |
| tPHL       |                                  |                 |                                                   |     | 18       | 27    |          |
|            | Clock to Yi (OE LOW)             |                 |                                                   |     | 18       | 27    | ns       |
| tPHL       |                                  | LOW             | Ci = 15 oF                                        | 18  | <u> </u> |       | <u> </u> |
| tpw        | Clock Pulse Width                | HIGH            | C <sub>L</sub> = 15 pF<br>R <sub>L</sub> = 2.0 kΩ | 15  | <u> </u> |       | ns       |
| tg         | Data                             |                 |                                                   | 15  | Ι        |       | ns       |
| th ć       | Data                             |                 |                                                   | 5.0 |          |       | ns       |
|            |                                  |                 |                                                   |     | 7.0      | 11    | ns       |
| tzH        | - OE to Yi                       |                 |                                                   |     | 8        | 12    |          |
| tzL        | <u> </u>                         |                 | C(=50 nE                                          |     | 14       | 21    |          |
| tHZ        | OE to Yi                         |                 | CL = 5.0 pF<br>RL ≈ 2.0 kΩ                        |     | 12       | 18    | - ns     |
| <u>trz</u> |                                  |                 |                                                   | 35  | 50       |       | MHz      |
| fmax       | Maximum Clock Frequency (Note 1) |                 | design and the frequency                          |     |          |       |          |

Note 1. Per industry convention, fmax is the worst case value of the maximum device operating frequency with no constraints on tr, tr, pulse width or duty cycle.

## SWITCHING CHARACTERISTICS over operating range unless otherwise specified\*

| ·                                 |                                  |                                                   | COMMERCIAL<br>Am29LS18 |     | MILITARY<br>Am29LS18 |     |       |
|-----------------------------------|----------------------------------|---------------------------------------------------|------------------------|-----|----------------------|-----|-------|
|                                   |                                  |                                                   |                        |     |                      |     |       |
| Parameters                        | Description                      | Test Conditions                                   | Min                    | Max | Min                  | Max | Units |
|                                   |                                  |                                                   |                        | 38  |                      | 45  | ns    |
|                                   | Clock to Qi                      |                                                   |                        | 38  |                      | 45  | 115   |
|                                   |                                  |                                                   |                        | 35  |                      | 40  | ns    |
| <sup>1</sup> РLН                  | Clock to Yi (OE LOW)             |                                                   |                        | 35  |                      | 40  |       |
| tphL                              |                                  |                                                   | 20                     |     | 20                   |     | ns    |
| t <sub>pw</sub>                   | Clock Pulse Width HIGH           | C <sub>L</sub> = 50 pF<br>R <sub>L</sub> = 2.0 kΩ | 20                     |     | 20                   |     |       |
| t <sub>s</sub>                    | Data                             |                                                   | 15                     |     | 15                   |     | ns    |
| ւ <u>s</u>                        | Data                             | -1                                                | 5.0                    |     | 5.0                  |     | ns    |
|                                   |                                  | -                                                 |                        | 15  |                      | 17  | ns    |
| 12н                               | - OE to Y <sub>i</sub>           |                                                   |                        | 16  |                      | 17  |       |
|                                   |                                  | $C_1 = 50 \text{ pF}$                             |                        | 27  |                      | 30  |       |
| tHZ                               | - OE to Yi                       | C <sub>L</sub> = 50 pF<br>R <sub>L</sub> = 2.0 kΩ |                        | 24  |                      | 30  | ns    |
| tLZ<br>fmax<br>*AC performance of | Maximum Clock Frequency (Note 1) |                                                   | 30                     |     | 25                   |     | MHz   |

\*AC performance over the operating tempe

Am29LS18