

CA3165

Electronic Switching Circuit

May 1999

Features

- · Switching Initiated by Damping of Internal Oscillator
- Proximity Sensing of Rotational Motion
- Repeatable Timing of Switching States
- Five Outputs Two Complementary Pairs and One Non-Inverting Output CA3165E1
- Two Outputs One Complementary Pair CA3165E

Part Number Information

PART NUMBER	TEMPERATURE	PACKAGE
CA3165E	-40°C to +85°C	8 Lead Plastic DIP
CA3165E1	-40°C to +85°C	14 Lead Plastic DIP

Pinouts

or email: centapp@harris.com Description

NO RECOMMENDED REPLACEMENT OBSOLETE PRODUCT

Call Central Applications 1-800-442-7747

The CA3165 is a single chip electronic switching circuit intended primarily for ignition applications. It includes an oscillator that is amplitude-modulated by the rotor teeth of a distributor, a detector that develops the positive going modulation envelope, a Schmitt trigger that eliminates switching uncertainties. Both types include two complementary high current switched outputs for driving power transistors requiring up to 120mA. The CA3165E also includes two complementary low current outputs that incorporate internal current limiting and a non-inverting output amplifier with uncommitted input capable of switching 27mA.

The CA3165 is supplied in the 8 lead dual-in-line plastic package (E suffix) and in the 14 lead dual-in-line plastic package (E1 suffix).

Absolute Maximum Ratings

Thermal	Information
mermai	mormation

DC Voltage (With Reference to Terminal 3) CA3165E1 Terminals 4, 6, 8 Terminals 5, 7, 12 Terminal 9 CA3165E Terminals 4, 5 Terminal 7 18V Current (At Terminals Indicated) CA3165E1 Terminals 4, 6 Terminals 5, 7	Thermal Resistance θ_{JA} Plastic DIP Package 8 Lead 150° C/WPlastic DIP Package 14 Lead 100° C/WOperating Temperature Range -40° C to $+85^{\circ}$ CStorage Temperature Range -65° C to $+150^{\circ}$ CLead Temperature -65° C to $+150^{\circ}$ CLead Temperature $+265^{\circ}$ CAt Distance $1/16^{\circ} \pm 1/32^{\circ}$ (1.59 ± 0.79 mm) from Casefor 10s MaximumDevice Dissipation Plastic DIP Package 8 LeadUp to $T_A = +55^{\circ}$ CAbove $T_A = +55^{\circ}$ CDevice Dissipation Plastic DIP Package 14 Lead
Terminal 8	Up to T _A = +55°C950mW
CA3165E Terminals 4, 5	Above $T_A = +55^{\circ}C$ Derate Linearly at 10mW/°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications	At $T_A = +25^{\circ}$ C, V+ = 13V, Measured in the circuit of Figure 5 (CA3165E1) or Figure 6 (CA3165E)
----------------------------------	--

				CA3165E	1		CA3165E	E	
PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	MIN	ТҮР	МАХ	UNITS
Input Current at Term. (Note 1)	Δ	Dwell	-	18.4	-	-	18.4	-	mA
		Spark	-	17.5	-	-	17.5	-	mA
Output Voltage at Term. 4	V ₄	Dwell	12.8	-	-	12.8	-	-	V
		Spark	-	-	0.5	-	-	0.5	V
Output Volatge at Term. 7	V ₇	Dwell	-	-	1	-	-	-	V
Output Voltage at Term. 8	V ₈	Dwell	-	-	0.9	-	-	-	V
		Portion of Spark	1.2	-	-	-	-	-	V
Oscillator Voltage at Term. 2	V ₂	Dwell	-	4.4	-	-	4.4	-	Vp-p
		Spark	-	0.6	-	-	0.6	-	Vp-p

NOTE:

 Δ I7

l12

1. CA3165E at Term. 7 CA3165E1 at Term. 12

CA3165

Application I	Figure 5 and Figure 6 show the application of the CA3165 in a typical ignition system.				
TERMINAL DESCRIPTIONS					
TERMINAL					
CA3165E1	CA3165E	FUNCTION			
1	1	Oscillator Feedback Resistor, R _F			
2	2	220Ω Protective Resistor To Tank Circuit			
3	3	Ground			
4	4	Direct Output - R_7 load resistor 200 $\Omega\pm$ 5%, and R_8 to power Darlington 15 $\Omega\pm$ 10%			
5	-	Direct Output - Low Current - Not Connected			
6	5	Inverted High Current Output			
7	-	Inverted Low Current Output Through C ₁ (0.01 μ F) to D ₃ and R ₃ (100k Ω)			
8	-	Output Amplifier Output - Through ${\sf R}_6$ and ${\sf R}_5$ (27 Ω and 820 Ω to Supply)			
9	-	Output Amplifier Input - through R4 (6800 Ω) to D3 and C5 (0.0047 μ F)			
10	6	Detector Output - C ₂ to Ground (0.01 μ F)			
11	-	No Connection			
12	7	Circuit Supply Voltage Through R_1 (220 Ω Protective Resistor) to Automotive Supply			
13	8	Oscillator Feedback Resistor R _F to Terminal 1			
14	-	No Connection			

Application Information

Figure 5 and Figure 6 show the application of the CA3165 in a typical ignition system. The oscillator on the chip operates at about 400kHz as determined by the tuned circuit L1, C2. The amplitude of the oscillation is detected on the chip and applied to a Schmitt trigger which sets the terminal voltage as shown in the chart in Figure 1 and Figure 2 for the unloaded condition of the oscillator. As a metallic tooth in the rotor passes the coil L1, eddy-current losses occur which reduce the Q of the resonant circuit and decrease the amplitude of the oscillations to a level below that of a reference in the detector circuit. The output terminals are then switched to states as shown in the chart in Figure 1 and Figure 2 for the loaded condition of the oscillator. The oscillation is maintained at this lower amplitude by switching in additional feedback in the oscillator circuit. The fact that the oscillator continues to operate at some minimum level during this dwell period eliminates timing variations which would occur if the oscillator had to be restarted by random noise.

Spark occurs as terminal 4 is switched from high to low. The output amplifier clamps terminal 4 low through the regulator during the duration of the spark.

The Dwell period represents the time that terminal 10 (CA3165E1) or terminal 6 (CA3165E) is high, terminal 4 is low, and the coil is charged.

The value of the oscillator feedback, resistor, R_F, is selected to set the dwell period. With a sintered-iron 8 f-tooth rotor, a typical value of R_F is 6500 Ω for 28.5 degrees of dwell out of a 45 degree cycle. For a star-type rotor and a particular coil in a typical distributor, the feedback resistor would be larger (typically 8800 Ω) depending on clearances, coil geometry and tooth shape.

For typical F-Tooth Rotor with Rod Sensor and 113μ H of coil inductance, the Q and frequency with respect to rotor position was measured for the following positions

CENTER	46 at 377kHz
SLOT	6 at 390kHz
FIRE	15 at 381kHz
(Free air Q	= 55.7 at 375kHz.)

