

PTRA093818NF

Thermally-Enhanced High Power RF LDMOS FET 415 W, 48 V, 925 – 960 MHz

Description

The PTRA093818NF is a 415-watt LDMOS FET intended for use in multi-standard cellular power amplifier applications in the 925 to 960 MHz frequency band. Features include input matching, high gain and thermally-enhanced package with earless flanges. Manufactured with Wolfspeed's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

Package Types: PG-HBSOF-6-2

Features

- Broadband internal input matching
- Asymmetrical design
 Main: P_{1dB} = 165 W Typ
 Peak: P_{1dB} = 250 W Typ
 - Typical Pulsed CW performance, 960 MHz, 48 V,
 - Doherty configuration
 - Output power at P_{3dB} = 375 W
 - Efficiency = 55% - Gain = 18 dB
- Capable of handling 10:1 VSWR @ 48 V, 81.4 W CW output power
- Integrated ESD protection
- Human Body Model class 1C (per ANSI/ESDA/ JEDEC JS-001)
- Low thermal resistance
- Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in Wolfspeed Doherty production test fixture)

V_{DD} = 48 V, I_{DQ} = 200 mA, V_{GS(PEAK)} = 2.0 V, P_{OUT} = 81.3 W avg, *f* = 960 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Linear Gain	G _{ps}	16.5	17	_	dB
Drain Efficiency	η_{D}	49	52	_	%
Adjacent Channel Power Ratio	ACPR	_	-30	-28.5	dBc
Output PAR @ 0.01% CCDF	OPAR	7	7.7	_	dB

Note:

All published data at T_{CASE} = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

Rev. 06.2, 2022-01-04

DC Characteristics (each side)

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Drain-Source Breakdown Voltage	V _{BR(DSS)}	105	_	-	V	$V_{GS} = 0 V, I_{DS} = 10 mA$	
Drain Leakage Current		_	_	1		$V_{DS} = 50 V, V_{GS} = 0 V$	
	DSS	_	_	10	μΑ	$V_{\rm DS} = 105 \rm V, V_{\rm GS} = 0 \rm V$	
Gate Leakage Current	I _{GSS}	_	_	1		$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	
On-State Resistance (main)		_	0.12	_			
On-State Resistance (peak)	R _{DS(on)}	_	0.08	_	Ω	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	
Operating Gate Voltage (main)	N	3	3.5	4	N	$V_{\rm DS} = 48$ V, $I_{\rm DQ} = 0.9$ A	
Operating Gate Voltage (peak)	- V _{GS}	_	2	-	V	$V_{DS} = 48 \text{ V}, I_{DQ} = 0 \text{ A}$	

Maximum Ratings

Parameter	Symbol	Value	Unit		
Drain-source Voltage	V _{DSS}	105			
Gate-source Voltage	V _{GS}	-6 to +12	v		
Operating Voltage	V _{DD}	0 to +55			
Junction Temperature	Tj	225	°C		
Storage Temperature Range	T _{STG}	-65 to +150	°C		

1. Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above. 2. Parameters values can be affected by end application and product usage. Values may change over time.

Thermal Characteristics

Characteristics	Symbol	Value	Unit	Conditions
Thermal Resistance (Main)	$R_{_{ extsf{ heta}JC}}$	0.57	°C/W	T _{CASE} = 70°C, 81.3 W CW

Moisture Sensitivity Level

Level	Test Signal	Package Temperature	Unit	
3	IPC/JEDEC J-STD-020	260	°C	

Ordering Information

Type and Version	Order Code	Package and Description	Shipping
PTRA093818NF V1 R5	PTRA093818NF-V1-R5	PG-HBSOF-6-2	Tape & Reel, 500 pcs

PTRA093818NF

Typical Performance (data taken in a production test fixture)

Figure 1. Single-carrier WCDMA Drive-up

 $\label{eq:VDD} \begin{array}{l} \mathsf{V}_{\mathsf{DD}} = 48 \; \mathsf{V}, \; \mathsf{I}_{\mathsf{DQ(MAIN)}} = 200 \; \mathsf{mA}, \\ \mathsf{V}_{\mathsf{GS(PEAK)}} = 2.0 \; \mathsf{V}, \; f = 960 \; \mathsf{MHz}, \\ 3\mathsf{GPP} \; \mathsf{WCDMA} \; \mathsf{signal}, \; \mathsf{PAR} = 10 \; \mathsf{dB}, \\ \mathsf{BW} = 3.84 \; \mathsf{MHz} \end{array}$

Figure 3. Single-carrier WCDMA Broadband Performance

 $\begin{array}{l} V_{\text{DD}} = 48 \text{ V}, \text{ I}_{\text{DQ(MAIN)}} = 200 \text{ mA}, \\ V_{\text{GS(PEAK)}} = 2.0 \text{ V}, \text{ P}_{\text{OUT}} = 49.1 \text{ dBm}, \\ \text{3GPP WCDMA signal, PAR} = 10 \text{ dB} \end{array}$

 $\label{eq:VDD} \begin{array}{l} V_{\text{DD}} = 48 \mbox{ V, } I_{\text{DQ(MAIN)}} = 200 \mbox{ mA}, \\ V_{\text{GS(PEAK)}} = 2.0 \mbox{ V, } P_{\text{OUT}} = 49.1 \mbox{ dBm}, \\ 3 \mbox{GPP WCDMA signal, } PAR = 10 \mbox{ dB} \end{array}$

Figure 4. CW Performance

 $\label{eq:VDD} \begin{array}{l} V_{\text{DD}} = 48 \text{ V}, \text{ I}_{\text{DQ(MAIN)}} = 200 \text{ mA}, \\ V_{\text{GS(PEAK)}} = 2.0 \text{ V} \end{array}$

3

Rev. 06.2, 2022-01-04

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Typical Performance (cont.)

Figure 5. CW Performance at various V_{DD}

 $I_{\rm DQ(MAIN)} = 200 \text{ mA}, \text{ V}_{\rm GS(PEAK)} = 2.0 \text{ V},$ f = 960 MHz

Figure 6. CW Performance Small Signal Gain & Input Return Loss

 $\label{eq:VDD} \begin{array}{l} V_{\text{DD}} = 48 \text{ V}, \text{ I}_{\text{DQ(MAIN)}} = 200 \text{ mA}, \\ V_{\text{GS(PEAK)}} = 2.0 \text{ V} \end{array}$

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Load Pull Performance

			P _{1dB}								
			Max Output Power					Max Drain Efficiency			
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	ηD [%]
925	2.34-j5.57	2.03-j1.79	19.7	53.30	216	60.0	3.40-j0.14	21.4	52.00	159	70.6
940	2.38-j5.42	2.09-j1.85	19.8	53.10	206	59.0	3.44-j0.44	21.5	51.70	147	69.3
960	3.96-j5.20	2.07-j1.66	20	53.10	205	61.0	3.33-j0.07	21.5	51.60	144	69.2

Main Side Load Pull Performance – Pulsed CW signal: 10 μ sec, 10% duty cycle, V_{DD} = 48 V, I_{DQ} = 350 mA, class AB

			P _{3dB}								
		Max Output Power					Max Output Power Max Drain Efficiency				
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]
925	2.34-j5.57	2.13-j2.00	17.8	54.13	259	62.6	3.49-j0.40	19.4	52.76	189	72.1
940	2.38-j5.42	2.14-j2.24	17.8	53.91	246	60.0	4.01-j0.08	19.8	52.04	160	70.6
960	3.96-j5.20	2.19-j2.31	17.9	53.87	244	60.6	3.44-j0.18	19.5	52.28	169	70.7

Peak Side Load Pull Performance – Pulsed CW signal: 10 µsec, 10% duty cycle, V_{DD} = 48 V, V_{GS(PEAK)} = 2 V, class C

			P _{1dB}								
		Max Output Power					Max Drain Efficiency				
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	ηD [%]
925	1.92-j4.34	1.06-j2.15	15.3	55.05	320	59.7	1.0-j0.86	16.4	52.56	180	72.8
940	2.49-j4.58	1-j2.17	15.48	55.05	320	59.4	1-j0.84	16.4	52.20	166	71.9
960	3.20-j5.21	1.12-j2.37	15.54	55.00	316	59.0	1.06-j1.12	16.5	52.67	185	70.4

			P _{3dB}								
		Max Output Power					Max Drain Efficiency				
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]
925	1.92-j4.34	1.33-j2.18	13.5	55.74	375	63.5	1.09-j0.98	14.4	53.57	228	72.7
940	2.49-j4.58	1.38-j2.45	13.3	55.70	372	59.4	1.04-j0.95	14.47	53.20	209	71.5
960	3.20-j5.21	1.04-j2.47	13.4	55.67	369	59.1	1.1-j1.26	14.57	53.50	224	70.0

Rev. 06.2, 2022-01-04

Evaluation Board, 925 – 960 MHz

Reference circuit assembly diagram (not to scale)

Evaluation Board Part Number	LTA/PTRA093818NF-V1
PCB Information	Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, ε _r = 3.66, <i>f</i> = 925 – 960 MHz

Find Gerber files for this test fixture on the Wolfspeed Web site at <u>www.wolfspeed.com/RF</u>

Rev. 06.2, 2022-01-04

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Components Information

Component	Description	Manufacturer	P/N
Input			· ·
C101, C104, C108, C110	Capacitor, 43 pF	ATC	ATC600F430JW250T
C102, C111	Capacitor, 4.7 μF	TDK Corporation	C4532X7S2A475M230KB
C103	Capacitor, 3.3 pF	ATC	ATC600F3R3CW250T
C105	Capacitor, 2.2 pF	ATC	ATC600F2R2CW250T
C106, C109	Capacitor, 6.2 pF	ATC	ATC600F6R2CW250T
C107	Capacitor, 1.8 pF	ATC	ATC600F1R8CW250T
R101, R102	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-3GEYJ100V
R103	Resistor, 50 ohms	Anaren	C16A50Z4
R104, R105	Resistor, 1K ohms	Panasonic Electronic Components	ERJ-8GEYJ102V
U1	Hybrid Coupler	Anaren	X3C09P1-04S
Output			
C201, C208	Capacitor, 6.2 pF	ATC	ATC600F6R2CW250T
C202	Capacitor, 10 pF	ATC	ATC600F100JW250T
C203, C205, C206, C211, C212	Capacitor, 4.7 μF	TDK Corporation	C4532X7S2A475M230KB
C204, C209, C210	Capacitor, 43 pF	ATC	ATC600F430JW250T
C207, C213, C214, C215	Capacitor, 10 µF	MURATA	GRM32EC72A106KE05

Pinout Diagram (top view)

Description

Pin

D1

D2

G1

G2

S

V1

V2

- Drain Device 1 (Main)
- Drain Device 2 (Peak)
- Gate Device 1 (Main)
- Gate Device 2 (Peak)
- Source (flange)
- Drain video decoupling, no DC bias
- NC or connected to GRD

Package Outline Specifications – Package PG-HBSOF-6-2 (top view)

Diagram Notes-unless otherwise specified:

1. Mold/dam bar/metal protrusion of 0.30 mm max per side not included.

2. Metal protrusions are connected to source and shall not exceed 0.10 mm max.

- 3. Fillets and radii: all radii are 0.3 mm max.
- 4. Interpret dimensions and tolerances per ISO 8015.
- 5. Dimensions are mm.
- 6. Does not include mold/dam bar and metal protrusion.

7. Exposed metal surface is tin-plated, may not be covered by mold compound.

- 8. All tolerances \pm 0.1 mm unless specified otherwise.
- 9. All metal surfaces are tin-plated, except area of cut.
- 10. Lead thickness: 0.25 mm.
- Pins: D1, D2 = drain; G1, G2 = gate; S = source; V1 = drain video decoupling, no DC Bias, V2 = NC or connected to GRD

Package Outline Specifications (cont.) – Package PG-HBSOF-6-2 (bottom view)

Diagram Notes-unless otherwise specified:

1. Mold/dam bar/metal protrusion of 0.30 mm max per side not included.

2. Metal protrusions are connected to source and shall not exceed 0.10 mm max.

3. Fillets and radii: all radii are 0.3 mm max.

4. Interpret dimensions and tolerances per ISO 8015.

5. Dimensions are mm.

6. Does not include mold/dam bar and metal protrusion.

7. Exposed metal surface is tin-plated, may not be covered by mold compound.

8. All tolerances \pm 0.1 mm unless specified otherwise.

9. All metal surfaces are tin-plated, except area of cut.

10. Lead thickness: 0.25 mm.

11. Pins: D1, D2 = drain; G1, G2 = gate; S = source; V1 = drain video decoupling, no DC Bias, V2 = NC or connected to GRD

Rev. 06.2, 2022-01-04

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 06.2, 2022-01-04

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.