

FAST RECOVERY RECTIFIERS

DESCRIPTION

This 1N3879 – 1N3883 rectifier device is suitable for applications in DC power supplies, inverters, converters, choppers and ultrasonic systems as well as other applications. It can also be used as a free-wheeling diode. It is available in both standard and reverse polarities. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Very low forward voltage.
- Fast recovery time.
- Low thermal resistance.
- Mechanically rugged.
- Both polarities available.
- RoHS compliant devices available by adding "e3" suffix.

APPLICATIONS / BENEFITS

- 6 amps current rating.
- Short reverse recovery time.
- High surge capability.
- Hermetically sealed.

MAXIMUM RATINGS

Parameters/Test Conditions		Symbol	Value	Unit
Junction and Storage Temperature		T_J and T_{STG}	-65 to +175	°C
Thermal Resistance Junction-to-Case		R _{eJC}	2.0	°C/W
Working Peak Reverse Voltage	1N3879(R)	V _{RWM}	50	V
	1N3880(R)		100	
	1N3881(R)		200	
	1N3882(R)		300	
	1N3883(R)		400	
Repetitive Peak Reverse Voltage	1N3879(R)	V _{RRM}	50	V
	1N3880(R)		100	
	1N3881(R)		200	
	1N3882(R)		300	
	1N3883(R)		400	
Maximum Non-Repetitive Sinusoidal Surge Current (8.3 ms)		I _{FSM}	200	Amps

DO-203AA (DO-4) Package

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed metal and glass case body with 10-32 UNF3A threaded stud.
- TERMINALS: Tin-lead plated or RoHS compliant matte-tin plating on nickel.
- MARKING: MSC, date code, and symbol.
- WEIGHT: 5 grams (approximate).
- Maximum Stud Torque: 10-15 inch pounds.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

R = Anode to Stud Blank = Cathode to Stud

SYMBOLS & DEFINITIONS			
Symbol	Definition		
CJ	Junction Capacitance: The junction capacitance in pF at a specified frequency.		
I _{F(AV)}	Average Forward Current: The average forward current dc value, no alternating component.		
I _{FSM}	Maximum Forward Surge Current: The forward current, surge peak or rated forward surge current.		
I _{RM}	Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.		
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.		
V _{FM}	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.		
V _{RRM}	Repetitive Peak Reverse Voltage: The peak reverse voltage including all repetitive transient voltages but excluding all non-repetitive transient voltages.		
V _{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B). Also sometimes known as PIV.		

ELECTRICAL CHARACTERISTICS

Туре	Typical Junction Capacitance CJ	Average Forward Current I _{F(AV)}	Maximum Forward Voltage V _{FM}	Maximum Reverse Current I _{RM}		Maximum Reverse Recovery Time
		T _c = 100 °C	T _J = 25 °C	T _J = 25 °C	T _J = 150 °C	t _{rr}
1N3879(R) 1N3880(R) 1N3881(R) 1N3882(R) 1N3883(R)	115 pF ⁽¹⁾	6 A	1.4 V @ I _{FM} = 20 A ⁽²⁾	15 μΑ @ V _{RRM}	3 mA @ V _{RRM}	200 ns ⁽³⁾

NOTES: 1. $V_R = 10 V$, f = 1 Mhz, $T_J = 25 °C$.

- 2. I_{FM} = 20 A, T_J = 25 °C. Pulse test: pulse width 300 µsec, duty cycle 2%.
- 3. IF = 1 A, VR = 30 A, di/dt = 25 A/ μ s, T_C = 55 °C.

GRAPHS

GRAPHS (continued)

FIGURE 4 Forward Current Derating

PACKAGE DIMENSIONS

NOTES:

- 1. 10-32 UNF3A threads.
- 2. Full threads within 2 ¹/₂ threads.
- 3. Standard polarity: stud is cathode. Reverse polarity: stud is anode.

	Dimensions				
Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
Α	-	-	-	-	1
В	.424	.437	10.77	11.10	
С	-	.505	-	12.82	
D	-	.800	-	20.32	
E	.422	.453	10.72	11.50	
F	.075	.175	1.90	4.44	
G	-	.405	-	10.29	
н	.163	.189	4.14	4.80	2
J	-	.250	-	6.35	
Μ	-	.424	-	10.77	Dia.
Ν	.020	.065	.510	1.65	
Р	.060	-	1.52	-	Dia.