CMOS 8-Bit Microcontroller

TMP87C444N, TMP87C844N

The 87C444/844 is the high speed and high performance 8-bit single chip microcomputer. This MCU contains CPU core, ROM, RAM, input/output ports, two multi-function timer/counters, serial bus interface, 8-bit D/A conversion outputs and 8-bit A/D conversion inputs on a chip.

bit D/A conve	ersion outputs and	8-bit A/D conv	version inputs	on a chip.		
	Part No.	ROM	RAM	Package	OTP MCU]
	TMP87C444N	4 Kbytes	256 bytes	P-SDIP42-600-1.7	78 TMP87P844N	
	TMP87C844N	8 Kbytes	250 59005			J
www.DataSheet46.com				P-S	DIP42-600-1 78	
 &-Bit sing Instruction &412 basic Multip Bit mail 16-bit 1-byte 10 interrumeries All souriand meiling 3 edge High-s \$5 Input/O Two 16-bit Timer, Pulse on Time Base Divider on Watchdon Interrumeries Serial bussion I2C-busion 8-bit S 8-bit S 8-bit S 8-bit S 8-bit succe 4 anali Conversion Power sation IDLE m Operation For a discussion Assurance /Ha ToSHIBA prodict for the products The information The information The information CORPORATION Weiler on With the products The information CORPORATION Windiction on the products The information CORPORATION Windication The information CORPORATION Windication The information CORPORATION Windication The information CORPORATION Windication State on the products State on the products	Jpt source/reset ou Interface s, 8-bit SIO modes: IO: 1 channel converter og outputs OP-Amp. essive approximate og inputs rsion time: 23 μs ving operating mo node: CPU stops, a g voltage: 4.5 to n Pod: BM87C84 pon of how the reliability o inding Precautions. ontinually working to im fail due to their inherei ucts, to observe standards b, bodily injury or damag ges as set forth in the mi iconductor Reliability Hance described in this document	0.5 μ s (at 8 M) on (8 bits × 8 b ear/Compleme call (Short rela al: 3, Intern dent latches e throl is available al interrupts w g by register b s) ogrammable P nt, External trig frequency: 1 kHz equency: 1 kHz thput (program at 8 MHz des nd Peripherals 5.5 V at 8 MHz des nd Peripherals 5.5 V at 8 MHz des intellectual property. In do st recent products brock. to the resented only as a intellectual property.	Hz) bits , 16 bits ÷ 8 ent/Move/Test/ tive jump / Ve- hal: 7) each, le. rith noise reject bank changeov ulse Generato gger timer, Wi z to 15625 Hz) z to 8 kHz) nmable) verter with sat s operate. Rele z in be predicted, plea and the reliability of specifications. Also, foreign exchange ar guide for the app y or other rights of or other rights of	bits) Exclusive Or) ctor call) cver r output ndow modes mple and hold ease by interrupt se refer to Section 1.3 of its products. Nevert to physical stress. It is hich a malfunction or ns, please ensure tha please keep in mind the difference of our products.	TMP: TMP: TMP: S. of the chapter entitled Qua theless, semiconductor device the responsibility of the buy failure of a TOSHIBA product t TOSHIBA products are use he precautions and condition cts. No responsibility is assu	es in general can er, when utilizing t could cause loss d within specified is set forth in the umed by TOSHIBA
	Purchase of TOSHIBA I ²	² C components co	onveys a license u		Patent Rights to use thes tandard Specification as	

Pin Assignments (Top View)

			¬ /	1
P-SDIP42-600-1.78	P00 < > [1	 ✓ 42 	J←VDD (VAREF)
	P01 < > [2	41] ≺ → P66 (AIN3)
	P02 < 🔶	3	40] ≪ → P65 (AIN2)
	P03 < > [4	39] →→ P64 (AIN1)
	P04 \prec 🔶 🗌	5	38] ≺ → P63 (AIN0)
	P05 < → [6	37] ≺ → P62 (SI1)
	P06 < → [7	36] < → P61 (SO1)
	P07 < → [8	35] ≺→ P60 (<mark>SCK1</mark>)
	(ĪNTO) P10 < → [9	34] < → P37 (SCL / SI0)
	(INT1) P11 < → [10	33] < → P36 (SDA / SO0)
	(INT2/TC1) P12 < → [11	32] < → P35 (<u>SCK0</u>)
	(DVO) P13 < → [12	31	I ←−AVCC
	(PPG) P14 < → [13	30] ≪→ P77 (DA7)
	(TC2) P15 < → [14	29] ≪ → P76 (DA6)
	P16 < → [15	28] ≪ → P75 (DA5)
	P17 < → [16	27] ≪ → P74 (DA4)
	TEST──►[17	26] < → P73 (DA3)
	RESET ← → [18	25] < → P72 (DA2)
	XIN	19	24] ≪ → P71 (DA1)
	xout←	20	23] ≺ → P70 (DA0)
	(VASS) VSS── > [21	22	⊐ ≺ A∨ss
	I			1

Block Diagram

I/O Ports

www.DataSheet4U.com

Pin Function

Pin Name	Input/Output	Function						
P07~P00	I/O							
P17, P16	I/O	Two 8-bit programmable input/output ports (tri-state)						
P15 (TC2)	l/O (Input)	Each bit of these ports can be	Timer / Counter 2 input					
P14 (PPG)		individually configured as an input or an output under software control.	Programmable pulse generator output					
P13 (DVO)	·· I/O (Output)	During reset, all bits are configured as inputs.	Divider output					
P12 (INT2/TC1)	.]		External interrupt input 2 or Timer / Counter 1 input					
P11 (INT1)	I/O (Input)	When used as a divider output or a PPG output, the latch must be set to "1".	External interrupt input 1					
P10 (INT0)			External interrupt input 0					
P37 (SCL/SI0)	l/O (l/O/Input)	3-bit input/output port with latch.	l ² C bus serial clock input/output or SIO0 serial data input					
P36 (SDA/SO0)	I/O (I/O/Output)	When used as an input port or a SBI input/output, the latch must be set to	l ² C bus serial data input/output or SIO0 serial data output					
P35 (<mark>SCK0</mark>)	I/O (I/O)	"1".	SIO0 serial clock input/output					
P66 (AIN3) ∼P63 (AIN0)	I/O (Input)	7-bit programmable input/output port (tri-state). Each bit of this port can be individually configured as an input or an	A/D converter analog inputs					
P62 (SI1)	I/O (Input)	output under software control. When used as a SIO1 input/output the latch	SIO1 serial data input					
P61 (SO1)	l/O (Output)	must be set to "1". When used as an analog input, select	SIO1 serial data output					
P60 (SCK1)	I/O (I/O)	analog input enable in the ADCCR.	SIO1 serial clock input/output					
P77 (DA7) ~P70 (DA0)	I/O (Output)	8-bit programmable input/output port (tri-state). Each bit of this port can be individually configured as an input or an output under software control. (Only the case of the DACCR1 = "1", I/O contorol can be available). When used as an analog output, the DACCR1 must be set to "0".	D/A converter analog outputs					
XIN, XOUT	Input, Output	Resonator connecting pins for high-frequency clock. For inputting external clock, XIN is used and XOUT is	opened.					
RESET	1/0	Reset signal input or watchdog timer output/addres	s-trap-reset output/system-clock-reset output.					
TEST	Input	Test pin for out-going test. Be tied to low						
VDD (VAREF)		+ 5 V	Analog reference voltage input for the A/D converter (High)					
VSS (VASS)	Power Supply	0 V (GND)	Analog reference voltage input for the A/D converter (Low)					
AVCC		Analog reference voltage input for the D/	A converter (High)					
AVSS		Analog reference voltage input for the D/	A converter (0V)					

OPERATIONAL DESCRIPTION

1. CPU CORE FUNCTIONS

The CPU core consists of a CPU, a system clock controller, an interrupt controller, and a watchdog timer. This section provides a description of the CPU core, the program memory (ROM), the data memory (RAM), and the reset circuit.

1.1 Memory Address Map

The TLCS-870 Series is capable of addressing 64K bytes of memory. Figure 1-1 shows the memory address maps of the 87C444/844. In the TLCS-870 Series, the memory is organized 4 address spaces (ROM, RAM, SFR, and DBR). It uses a memory mapped I/O system, and all I/O registers are mapped in the SFR / DBR address spaces. There are 16 banks of general-purpose registers. The register banks are also assigned to the first 128 bytes of the RAM address space.

Figure 1-1. Memory Address Map

Figure 1-2. ROM Address Maps

Electrical Characteristics

Absolute Maximum Rat	ings	(V _{SS} = 0 V)			
Parameter	Symbol	Conditions	Ratings	Unit	
Supply Voltage	V _{DD}		– 0.3 to 6.5	V	
Input Voltage	V _{IN}		– 0.3 to V _{DD} + 0.3	V	
Output Voltage	V _{OUT1}	Except sink open drain pin, but include RESET	– 0.3 to V _{DD} + 0.3	v	
	V _{OUT2}	Sink open drain pin except RESET	– 0.3 to 5.5		
Output Current (Per 1 pin)	I _{OUT1}	Ports P0, P1, P3, P6, P7	3.2	mA	
Output Current (Total)	ΣI_{OUT1}	Ports P0, P1, P3, P6, P7	120	mA	
Power Dissipation [Topr = 70°C]	PD		600	mW	
Soldering Temperature (time)	Tsld		260 (10s)	°C	
Storage Temperature	Tstg		– 55 to 125	°C	
Operating Temperature	Topr		– 30 to 70	°C	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended	Operating	Conditions
Necommended	Operating	Conditions

 $(V_{SS} = 0 V, Topr = -30 to 70^{\circ}C)$

Parameter	Symbol	Pins	Conditions		Min	Max	Unit
Sumply Voltono			fc = 8 MHz	NORMAL mode	4.5		v
Supply Voltage	V _{DD}			IDLE mode	4.5	5.5	v
	V _{IH1}	Except hysteresis input	V SAEV		V _{DD} × 0.70	N	
input High voltage	nput High Voltage V_{IH2} Hysteresis input $V_{DD} \ge$	V _{DD} ≧4.5 V	V _{DD} × 0.75	V _{DD}	V		
	V _{IL1}	Except hysteresis input				$V_{DD} \times 0.30$	v
Input Low Voltage	V _{IL2}	Hysteresis input	V _{DD} ≧4.5 V		0	V _{DD} x 0.25	v
Clock Frequency	fc	XIN, XOUT	V _{DD}	= 4.5 to 5.5 V	1.0	8.0	MHz

Note: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

D.C. Ch	aracteri	stics	(V _{SS} = 0 V, Te	opr = - 30 to 70°C)				
Parameter	Symbol	Piı	ns	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs			-	0.9	-	v
	I _{IN1}	TEST						
Input Current	I _{IN2}	Open drain ports and Tri-state ports		$V_{DD} = 5.5V, V_{IN} = 5.5 V / 0 V$	_	-	±2	μΑ
	I _{IN3}	RESET						
U.com	R _{IN2}	RESET			100	0 220 450		
Input Resistance	R _{IN3}	Port P7			4	6	10	kΩ
Output Leakage	I _{LO1}	Open drain ports	5	$V_{DD} = 5.5 V, V_{OUT} = 5.5 V$	_	-	2	
Current	I _{LO2}	Tri-state ports		$V_{DD} = 5.5 V, V_{OUT} = 5.5 V / 0 V$	-	-	± 2	μΑ
Output High	V _{OH1}	Tri- state ports		$V_{DD} = 4.5 V, I_{OH} = -0.7 mA$				
Voltage	V _{OH2}	Port P7		$V_{DD} = 4.5 V, I_{OH} = -0.2 mA$	4.1	-	-	V
Output Low Voltage	V _{OL}	Except XOUT		$V_{DD} = 4.5 V, I_{OL} = 1.6 mA$	-	-	0.4	v
Supply Current in NORMAL mode				V _{DD} = 5.5 V	- 1	8	14	mA
Supply Current in IDLE mode				V _{IN} = 5.3 V / 0.2 V fc = 8 MHz	_	4	6	mA

Note 1: Typical values show those at $T_{opr} = 25^{\circ}C$, $V_{DD} = 5V$.

Note 2: Input Current: I_{IN1} , I_{IN3} ; The current through pull-up or pull-down resistor is not included.

Note 3: I_{DD} does not include I_{AREF} / I_{DREF}.

A/D Conversion Chara	cteristics	(Topr = -30 to 70° C: V _{SS} = V _{ASS} = 0V)			$V_{SS} = V_{ASS} = 0$ V)			
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit		
Analog Reference Voltage	V _{AREF}	V _{DD} = V _{AREF}	4.5	-	5.5	V		
Analog Input Voltage	V _{AIN}		V _{ASS}	_	VAREF	V		
Analog Supply Current	I _{AREF}		-	0.5	1.0	mA		
Nonlinearity Error			-	_	± 2			
Zero point Error		$V_{AREF} = V_{DD} = 5.000 V$	-	—	± 2			
Full Scale Error		$V_{ASS} = V_{SS} = 0.000 V$	—	_	± 2	LSB		
Total Error]	_	—	± 3			

D/A Conversion Characteristics			$V_{SS} = A_{VSS} = 0, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C}$						
	Parameter	Symbol	Conditions	Min	Тур.	Max	Unit		
Analog Re	Analog Reference Voltage			4.5	-	V _{DD}	V		
Current D	issipation	I _{DREF}	No Loading, All channel operating	_	-	25	mA		
Resolution					-	8	bits		
Accuracy	Nonlinearity Error		A _{VCC} = 5.000 V: A _{VSS} = 0.000 V	_	_	± 2.0			
Accuracy	Differential Nonlinearity Error		Monotonicity Guarantee (Note)	-	_	± 3/4	LSB		
Settling ti	Settling time		Loading condition: c = 15 pF	-	_	20	ms		
			No Loading	0.03	-	A _{VCC} – 0.25	.,		
OP-Amp o	output Voltage Range	V _{AO}	$I_{AO} = 1.2 \text{ mA} / I_{AO} = -200 \ \mu \text{A}$	0.3	_	A _{VCC} - 0.3			
OP-Amp o	OP-Amp output Drive Range		A _{VCC} – 0.5 to 0.5V	-	+ 2/ – 1	-	mA		
Maximum output	•			-	-	15	pF		
	Analog Re Current D Resolution Accuracy Settling ti OP-Amp c OP-Amp c Maximum	Parameter Analog Reference Voltage Current Dissipation Resolution Accuracy Nonlinearity Error Differential Nonlinearity Error Settling time OP-Amp output Voltage Range OP-Amp output Drive Range Maximum Capacitors connected to D/A	Parameter Symbol Analog Reference Voltage A _{VCC} Current Dissipation I _{DREF} Resolution I Accuracy Nonlinearity Error Differential Nonlinearity Error Settling time Settling time T _{SU} OP-Amp output Voltage Range V _{AO} OP-Amp output Drive Range I _{AO} Maximum Capacitors connected to D/A Coulor	ParameterSymbolConditionsAnalog Reference Voltage A_{VCC} Current Dissipation I_{DREF} No Loading, All channel operatingResolution $A_{VCC} = 5.000 V: A_{VSS} = 0.000 V$ AccuracyNonlinearity Error $A_{VCC} = 5.000 V: A_{VSS} = 0.000 V$ Differential Nonlinearity ErrorMonotonicity Guarantee (Note)Settling time T_{SU} Loading condition: $c = 15 \text{ pF}$ OP-Amp output Voltage Range V_{AO} $No Loading$ OP-Amp output Drive Range I_{AO} $A_{VCC} - 0.5 \text{ to } 0.5V$ Maximum Capacitors connected to D/A Cou	ParameterSymbolConditionsMinAnalog Reference Voltage A_{VCC} 4.5Current Dissipation I_{DREF} No Loading, All channel operating-ResolutionAccuracyNonlinearity Error $A_{VCC} = 5.000 V: A_{VSS} = 0.000 V$ -Differential Nonlinearity ErrorMonotonicity Guarantee (Note)-Settling time T_{SU} Loading condition: c = 15 pF-OP-Amp output Voltage Range V_{AO} No Loading0.03OP-Amp output Drive Range I_{AO} $A_{VCC} = 0.5$ to $0.5V$ -Maximum Capacitors connected to D/ACou	ParameterSymbolConditionsMinTyp.Analog Reference Voltage A_{VCC} 4.5-Current Dissipation I_{DREF} No Loading, All channel operatingResolutionAccuracyNonlinearity Error $A_{VCC} = 5.000 V: A_{VSS} = 0.000 V$ Differential Nonlinearity ErrorMonotonicity Guarantee (Note)Settling time T_{SU} Loading condition: $c = 15 \text{ pF}$ OP-Amp output Voltage Range V_{AO} No Loading0.03-OP-Amp output Drive Range I_{AO} $A_{VCC} - 0.5 \text{ to } 0.5V$ -+ 2/ - 1Maximum Capacitors connected to D/ACou	ParameterSymbolConditionsMinTyp.MaxAnalog Reference Voltage A_{VCC} 4.5 $ V_{DD}$ Current Dissipation I_{DREF} No Loading, All channel operating $ 25$ Resolution $ 8$ AccuracyNonlinearity Error $A_{VCC} = 5.000 V: A_{VSS} = 0.000 V$ $ \pm 2.0$ Differential Nonlinearity Error $A_{VCC} = 5.000 V: A_{VSS} = 0.000 V$ $ \pm 3/4$ Settling time T_{SU} Loading condition: $c = 15 \text{ pF}$ $ 20$ OP-Amp output Voltage Range V_{AO} $No Loading$ 0.03 $ A_{VCC} - 0.25$ OP-Amp output Drive Range I_{AO} $A_{VCC} - 0.5 \text{ to } 0.5V$ $ + 2/-1$ $-$ Maximum Capacitors connected to D/ACou $ 15$		

Note: Differential nonlinearity error does not include quantizing error.

 $(V_{SS} = 0V, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$ A.C. Characteristics Unit Parameter Symbol Conditions Min Тур. Max In NORMAL mode 0.5 4 Machine Cycle Time tcy _ $\mu {f S}$ In NORMAL mode High Level Clock Pulse Width t_{wcн} For external clock operation 50 _ _ ns (XIN input) , fc = 8 MHz Low Level Clock Pulse Width t_{WCL}

Recommended Oscillating Condition $(V_{SS} = 0 V, V_{DD} = 4.5 \text{ to } 5.5 V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Ossillatar	Francisco	Recommended		Recommended Conditions		
Parameter Oscillator		Frequency	Oscillator		C ₁	C ₂	
High-frequency	Ceramic Resonator	8 MHz	KYOCERA	KBR8.0M	30 pF	30 pF	
	Crystal Oscillator	8 MHz	тоуоком	210B 8.0000	20 pF	20 pF	

Note: To keep reliable operation, shield the device electrically with the metal plate on its package mold surface against the high electric field, for example, by CRT (Cathode Ray Tube).

1999-08-23