Freescale Semiconductor
Application Note

AN2407
Rev. 1, 12/2004

Reed Solomon Encoder/Decoder on
the StarCore™ SC140/SC1400 Cores,
With Extended Examples

By Jasmin Oz and Assaf Naor

This application note describes the implementation of the Reed-
Solomon error-control codes on the StarCore™ SC140 DSP
core. Reed-Solomon codes are the preferred error-control
coding procedures in a wide range of applications, such as
ADSL, digital cellular phones, storage devices, and deep-space
communications. Their popularity originates from their strong
capability to correct both random and burst errors.

The current trend for improving DSP-processing speed is to
place multiple processor units on a single chip with an
architecture that supports parallel execution. The StarCore
SC140 family of DSPs exemplifies this trend. It has four data-
arithmetic units (DALUs) and two address-generation units
(AGUs). Code implementation for these processors should
capitalize on their capabilities. This document describes the
implementation of the Reed-Solomon encoder and decoder on
the SC140 core. The document begins with a basic theoretical
background on the Reed-Solomon algorithm and then discusses
the implementation of the encoder and decoder. Little or no
background on the subject is required.

© Freescale Semiconductor, Inc., 2003, 2004. All rights reserved.

CONTENTS
1 Basics of Forward Error Correction (FEC) 2
2 TREOTY ..ttt sttt ettt st e 3
2.1 Galois FieldScooooueieeeeeeeeceeeeeee e 3
2.2 Reed-Solomon COdescoeeeeeeemeeeeeeeeeeeeeeenn. 6
2.3 Error-Correcting Performance of

Reed-Solomon Codescccecveeeciieeniienneeeeieeieenne 9
3 SC140 Core OVEIVIEWoeveveeeereereeereeeeeveeeeenenn 10
4 Implementation on the SC140 Core.............c......... 12
4.1 Polynomial Evaluation Over GF(256) 13
4.2 MAC Instructions Over Galois Fields 14
4.3 LooK-Up TableS ..c.covererrrieiveiireeieeeieee e e 14
4.4 Lowest Cycle Count Limit for Polynomial

Evaluationcccoeeeiieiiiiiiiieiie e 15
4.5 Cycle Count of the Reed-Solomon Routines 16
5 RESUILS ...ttt e 17
6 SUMMATY .ottt 19
7 REFEIENCES ..uvovvvieeeveceieeeteeeee ettt 19

e

Z “freescale

semiconductor

Basics of Forward Error Correction (FEC)

1 Basics of Forward Error Correction (FEC)

In an ideal communication scheme, the information received is identical to the source transmission. However, in a
typical real communication scheme, the information passes through a noisy communication channel to the receiver.
The information received at the destination is likely to contain errors due to the channel noise. The acceptable level
of transmitted signal corruption (error level) depends on the application. Voice communication, for example, is
relatively error tolerant. However, the prospect of occasionally losing a digit in communications of financial data
highlights the need for error-control mechanisms.

In 1948, C.E. Shannon proved in his classic paper [1] that a communications channel can be made arbitrarily
reliable by encoding the information so that a fixed fraction of the channel is used for redundant information. In the
years that followed, there was a rapid development in designing FEC schemes. Today, a variety of effective coding
algorithms are widely used. FEC offers a number of benefits:

» Data integrity is critical in the design of most digital communication systems and all storage devices.
Along with the design trend toward increasing bandwidths and data volumes, there is a drive to
decrease the allowed error rates. FEC enables a system to achieve high data reliability.

* FEC yields low error rates and performance gains for systems in which other options, such as
increasing the transmitted power or installing noise-limiting components, are too expensive or
impractical.

* System costs may be reduced by eliminating an expensive or sensitive component and compensating
for the lost performance by a suitable FEC scheme.

For an overview of FEC schemes, consult [2] and [3].

FEC adds carefully designed information to the transmitted data and uses this redundant information to reconstruct
the potentially corrupted data. Figure 1 depicts a typical communications scheme.

Input Source Source Encoder FEC Encoder Modulation
—P > —>
4
Noise \AAANA Channel
4
< < <
Destination Source Decoder FEC Decoder Demodulation

Figure 1. FEC Communications System

The two main type of error-control codes used in communications systems are as follows:

* Convolutional codes. Each bit depends on the current bit as well as on a number of previous bits. In
this sense, the convolutional code has a memory. The most common scheme for decoding
convolutional codes is the Viterbi algorithm.

* Block codes. A bitstream is divided into message blocks of fixed length called frames. The valid code-
word block is formed from the message bitstream by adding a proper redundant part. Each code word
is independent of the previous one, so the code is memory-less.

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

2 Freescale Semiconductor

Theory

The Reed-Solomon codes are block codes. Unlike convolutional codes, Reed-Solomon codes operate on multi-bit
symbols rather than on individual bits. The question of whether to choose convolutional codes or block codes
depends on several variables. In low-speed, low-integrity applications, convolutional codes are the better choice,
and block codes are suitable for high-speed, high-integrity applications. An example of an application suited to
convolutional codes is a digitized voice communication in which a relatively high bit-error rate (about 1073) is
acceptable. For blocks of machine-oriented data in which the desired bit-error rate ranges from 10710 o 10‘14,
block codes are the natural choice. Some applications use both convolutional and block codes. In such applications,
concatenated codes result in strong performance by operating in two steps. The inner decoder, usually
convolutional, reduces the bit-error rate to a medium-low level, and the outer decoder, usually a block type,
reduces the bit-error rate further, to a very low level.

The errors introduced by the communications channel are classified into two main categories:

* Random errors. The bit-error probabilities are independent of each other. For example, thermal noise
in communication channels typically causes random errors.

* Burst errors. The bit errors occur sequentially in time. Burst errors can be caused by such conditions as
a fading communications channel or mechanical defects in a storage system.

When an FEC system is designed, the statistical nature of the noise environment must be considered, as well as the
acceptable output bit-error rate. When the environment consists predominately of random errors, convolutional
codes provide a low bit-error rate solution. However, when the environment has lower bit-error rates, long-length
block codes often perform even better. In burst-error channels, Reed-Solomon codes are among the best codes
because errors composed of many consecutive corrupted bits translate into only a few erroneous symbols.

2 Theory

The Reed-Solomon code was developed in 1960 by 1. Reed and G. Solomon [4]. This code is an error detection and
correction scheme based on the use of Galois field arithmetic. This section provides background information on
binary and extended Galois fields and summarizes the essence of the Reed-Solomon codes. For details on Reed-
Solomon codes, consult the literature, for example, [5] and [6].

2.1 Galois Fields

A number field has the following properties:

* Both an addition and a multiplication operation that satisfy the commutative, associative, and
distributive laws.

* Closure, so that adding or multiplying elements always yields field elements as results.

* Both zero and unity elements. The zero element leaves an element unchanged under addition. The
unity element leaves an element unchanged under multiplication.

* An additive/multiplicative inverse for each field element. The sole exception is the zero element,
which has no multiplicative inverse.

Division is defined as the inverse of multiplication such that if a X b = ¢, it follows that ¢ divided by a yields b. An
example of a number field is the set of real numbers together with the addition and multiplication operations.
Galois fields differ from real number fields in that they have only a finite number of elements. Otherwise, they
share all the properties common to number fields.

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 3

Theory

2.1.1 Binary Field, GF(2)

The simplest Galois field is GF(2). Its elements are the set {0,1} under modulo-2 algebra. Addition and subtraction
in this algebra are both equivalent to the logical XOR operation. The addition and multiplication tables of GF(2)
are shown in Figure 2.

Addition Multiplication
+ 0 1 X 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Figure 2. Addition (XOR) and Multiplication Tables of GF(2)

There is a one-to-one correspondence between any binary number and a polynomial in that every binary number
can be represented as a polynomial over GF(2), and vice versa. A polynomial of degree D over GF(2) has the
following general form:

fx) = fo+fix +f2x2 +f3x3... +fDxD

where the coefficients fj...., fp are taken from GF(2). A binary number of (N+1) bits can be represented as an
abstract polynomial of degree N by taking the coefficients equal to the bits and the exponents of x equal to the bit
locations.

For example, the binary number 100011101 is equivalent to the following polynomial:

100011101 <> 1+ X2+ +x +1°

The bit at the zero position (the coefficient of xo) is equal to 1, the bit at the first position (the coefficient of x) is
equal to 0, the bit at the second position (the coefficient of x°) is equal to 1, and so on. Operations on polynomials,
such as addition, subtraction, multiplication and division, are performed in an analogous way to the real number
field. The sole difference is that the operations on the coefficients are performed under modulo-2 algebra. For
example, the multiplication of two polynomials is as follows:

2 3 4 3 5 3 5 5 6 7 7 8 9 3 6 8 9
(IT+x +x +x) (X +X) =X +x +X +X +Xx +X +x +X =X +X +x +Xx

This result differs from the result obtained over the real number field (the middle expression) due to the XOR
operation (the + operation). The terms that appear an even number of times cancel out, so the coefficients of x> and

x' are not present in the end result.

2.1.2 Extended Galois Fields GF(2™)

A polynomial p(x) over GF(2) is defined as irreducible if it cannot be factored into non-zero polynomials over
GF(2) of smaller degrees. It is further defined as primitive if n = (x" + 1) divided by p(x) and the smallest positive
integer n equals 2™ —1, where m is the polynomial degree. An element of GF(2™) is defined as the root of a
primitive polynomial p(x) of degree m. An element o is defined as primitive if

OCimod(zm‘1)

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

4 Freescale Semiconductor

Theory

where i e N, can produce 21 field elements (excluding the zero element). In general, extended Galois fields of
class GF(2™) possess 2™ elements, where m is the symbol size, that is, the size of an element, in bits. For example,
in ADSL systems, the Galois field is GF(256). It is generated by the following primitive polynomial:

T+ +x050 4% x5

This is a degree-eight irreducible polynomial. The field elements are degree-seven polynomials. Due to the one-to-
one mapping that exists between polynomials over GF(2) and binary numbers, the field elements are representable
as binary numbers of eight bits each, that is, as bytes. In GF(2"™) fields, all elements besides the zero element can be
represented in two alternative ways:

1. In binary form, as an ordinary binary number.

2. Inexponential form, as o. It follows from these definitions that the exponent p is an integer ranging
from O to (2"-2). Conventionally, the primitive element is chosen as 0x02, in binary representation.

As for GF(2), addition over GF(2™) is the bitwise XOR of two elements. Galois multiplication is performed in two
steps: multiplying the two operands represented as polynomials and taking the remainder of the division by the
primitive polynomial, all over GF(2). Alternatively, multiplication can be performed by adding the exponents of
the two operands. The exponent of the product is the sum of exponents, modulo 2 —1.

Polynomials over the Galois field are of cardinal importance in the Reed-Solomon algorithm. The mapping
between bitstreams and polynomials for GF(2") is analogous to that of GF(2). A polynomial of degree D over
GF(2™) has the most general form:

fx) = fo+fix +f2x2 +f3x3... +fDxD

where the coefficients f, — fp, are elements of GF(2™). A bitstream of (N+1)m bits is mapped into an abstract

polynomial of degree N by setting the coefficients equal to the symbol values and the exponents of x equal to the bit
locations. The Galois field is GF(256), so the bitstream is divided into symbols of eight consecutive bits each. The
first symbol in the bitstream is 00000001. In exponential representation, 00000001 becomes o’. Thus, 0 becomes

the coefficient of x’. The second symbol is 11001100, so the coefficient of x is /27 and so on.
11110011 11111101 10110111 01110101 11001100 00000001
0(233 0(80 0(1 58 0(21 0(1 27 OLO

“ f(x) = o + 01?7 x+ 02T X2 + 01583 + 080x* + 2B Y

The elements are conventionally arranged in a log table so that the index equals the exponent, and the entry equals
the element in its binary form. Table 1 displays the log table for ADSL systems.

Table 1. Exponential-to-Binary Table for ADSL Systems

P op
0 0x01
1 0x02
2 0x04
3 0x08
4 0x10

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 5

Theory

Table 1. Exponential-to-Binary Table for ADSL Systems

p op
5 0x20
6 0x40
7 0x80
8 0x1D
9 Ox3A
10 0x74
253 0x47
254 Ox8E

The zero element does not appear in the table since it deserves special attention (see Section 4.3, Look-up Tables).
Although multiplication is a complicated operation when performed bitwise, it is very simple if the exponential
representation is used. The converse is true for addition. Therefore, two types of look-up tables are useful: a log
table as shown in Table 1 and an anti-log table that translates from binary to exponential representation.

2.2 Reed-Solomon Codes

Reed-Solomon codes are encoded and decoded within the general framework of algebraic coding theory. The main
principle of algebraic coding theory is to map bitstreams into abstract polynomials on which a series of
mathematical operations is performed. Reed-Solomon coding is, in essence, manipulations on polynomials over
GF(2™). A block consists of information symbols and added redundant symbols. The total number of symbols is
the fixed number 2" —1. The two important code parameters are the symbol size m and the upper bound, 7, on
correctable symbols within a block. 7T also determines the code rate, since the number of information symbols
within a block is the total number of symbols, minus 27. Denoting the number of errors with an unknown location

asn and the number of errors with known locations as n,,,,.> the Reed-Solomon algorithm guarantees to

errors
correct a block, provided that the following is true: 21,1 + Rergsures < 27, Where T is configurable. The current

implementation does not deal with erasures, and this document considers only error correction.

2.2.1 Encoding

When the encoder receives an information sequence, it creates encoded blocks consisting of N = 2" -1 symbols
each. The encoder divides the information sequence into message blocks of K= N — 2T symbols. Each message
block is equivalent to a message polynomial of degree K —1, denoted as m(x). In systematic encoding, the encoded
block is formed by simply appending 27 redundant symbols to the end of the K-symbols long-message block, as
shown in Figure 3. The redundant symbols are also called parity-check symbols.

K Message Symbols 2T Redundant Symbols

N = K+2T Block Symbols >

A

Figure 3. Block Structure

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

6 Freescale Semiconductor

Theory

The redundant symbols are obtained from the redundant polynomial p(x), which is the remainder
obtained by dividing x*Tm(x) by the generator polynomial g(x):

p(x) = (x" m(x))modg(x)

where is the generator polynomial. We choose the most frequently used generating polynomial:
P2 T)

g(x) = (x+ o D(x+ " 2)(x+0d3)...(x +
g(x) = (x+ o) (x+ o) (x+0)...(x+ o)

The code-word polynomial c(x) is defined as follows:

c(x) = x> m(x) +p(x)

Since in GF(2™) algebra, plus (+), and minus () are the same, the code word actually equals the polynomial
xZTm(x) minus its remainder under division by g(x). It follows that c(x) is a multiple of g(x). Since there is a total of
2"K different possible messages, there are 2"K different valid code words at the encoder output. This set of 2mK

code words of length N is called an (N,K) block code.

2.2.2 Decoding

When a received block is input to the decoder for processing, the decoder first verifies whether this block appears
in the dictionary of valid code words. If it does not, errors must have occurred during transmission. This part of the
decoder processing is called error detection. The parameters necessary to reconstruct the original encoded block
are available to the decoder. If errors are detected, the decoder attempts a reconstruction. This is called error
correction. Conventionally, decoding is performed by the Petersen-Gorenstein-Zierler (PGZ) algorithm, which
consists of four parts:

1. Syndromes calculation.

2. Derivation of the error-location polynomial.
3. Roots search.

4. Derivation of error values.

The error-location polynomial in this implementation is found using the Berlekamp-Massey algorithm, and the
error values are obtained by the Forney algorithm. The four decoding parts are briefly outlined as follows:

1. Syndromes calculation: From the received block, the received polynomial is reconstructed, denoted as
c(x). The received polynomial is the superposition of the correct code word c(x) and an error polyno-
mial e(x):

r(x) = c(x)+e(x)
The error polynomial is given in its most general form by:

i i iy iv-1)
ex) =e.x +e.x +e.x ..., e€;
()) 1) > Tl

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 7

Theory

where iy, i; and so on denote the error location indices, and v the actual number of errors that have
occurred. The 27 syndromes are obtained by evaluating the received polynomial r(x) at the 2T field
points:

Since c(x) is a multiple of g(x), it has the following general form:

c(x) = q(x)g(x)

where g(x) is a message-dependent polynomial. It follows from the definition of g(x) that the following
field points:

2 3 2T
o, 0,0 ..., o

are roots of g(x). Hence c(x) vanishes at the 27 points and the syndromes:

81585, 83..., 8,7

contain only of the part consisting of the error polynomial e(x):

S, =e(a)
S, = e(0)
Sy =e(a)

2T
S,r=e(o)

If all 27 syndromes vanish, e(x) is either identically zero, indicating that no errors have occurred
during the transmission, or an undetectable error pattern has occurred. If one or more syndromes are
non-zero, errors have been detected. The next steps of the decoder are to retrieve the efror locations
and the error v?lues from the syndromes. Denoting the actual number of errors as v, X “ as X, and the
error values e asY o the 2T syndromes S; — S, can then be expressed as follows:

S, = Y, X, + Y,X, + VX5V X,
2 2 2 2
S, = Yi(X) + Y, (X)) + Y5(X3) ... Yy (X,)

3 3 3 3
Sy =Y (X)) + Y, (X,) +Y3(X5)" ... Y, (X,)

2T 2T 2T 2T
S,r =Y (X)) +Y,(Xy)" +Y3(X5)7 . Y (X))

Thus, there are 27 equations to solve that are linear in the error values Y; and non-linear in the error
locations Xj.

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

Theory

2. Derivation of the error-location polynomial: The output of the Berlekamp-Massey algorithm is the
error-location polynomial A(x), defined as:

AG) = (1+xX)(1+xX)(1+xX3) .. (1+xX,) =1+ Ax+Ax” + Ay + A x"

A(x) has at most v different roots. The inverses of the roots have the form Oclk, where i, is the error-
location index. It can be proven [6] that the so-called Newton identity holds for the coefficients of A(x)
and the syndromes:

+AS 1 +AS

V- j+V—2"'7\'VSj =0

The Berlekamp-Massey algorithm is an iterative way to find a minimum-degree polynomial that
satisfies the Newton identities for any j. If the degree of A(x) obtained by the Berlekamp-Massey
algorithm exceeds 7, this indicates that more than 7 errors have occurred and the block is therefore not
correctable. In this case, the decoder detects the occurrence of errors in the block, but no further

attempt of correction is made, and the decoding procedure stops at this point for this block.

Sj+v

3. Roots search: The roots of the error-location polynomial are obtained by an exhaustive search, that is,
by evaluating A(x) at all Galois field elements, checking for possible zero results. The exponents of the
inverses of the roots are equal to the error-location indices.

If the number of roots is less than the degree of A(x), more than T errors have occurred. In this case,
errors are detected, but they are not corrected, and decoding stops at this point for this block.

4. Derivation of error values: The error values are obtained from the Forney algorithm in this implemen-
tation. Once the error locations X are found, the error values Y} are found from the v first syndromes

equation by solving the following:

X X, XY, S,
XIV sz . XX YV SV

The Forney algorithm is an efficient way to invert the matrix and solve for the errors values Y; _ Y.

2.3 Error-Correcting Performance of Reed-Solomon Codes

The Reed-Solomon code ensures error detection and correction as long as the number of errors is at most 7. If more
than T errors occur, one of two things happen:

* An uncorrectable error is detected. No attempts are made by the decoder to correct the block.

* The received block accidentally resembles a valid code word different from the correct one and the
decoder decodes the block into an incorrect code word.

Under the assumption of completely random bit errors, the bit-error rate P, is related to the symbol-error rate P, by
the following: P .= 1—-(1-P b)m On the other hand, if the symbol errors are independent, the probability of
more than T errors occurring in a block is given by:

T

Pear = 1= 3 (V)e)a-p)

i=0

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 9

SC140 Core Overview

An alternative way to interpret P, ris as the ratio of uncorrectable encoded blocks to the total number of received
blocks, as the latter tends to infinity. A decoding error happens when an uncorrectable error is not recognized as
such, and the whole block is decoded into another valid code word. The probability P,, of a miscorrection is
bounded by

1
P m S ﬁP E>T
In typical applications with m = 8, the miscorrection rate P,, is about five orders of magnitude less than Pg. . The
curves in Figure 4, below, depict the probability of uncorrectable error for a block length N fixed to 255 and T

varying from 1 to 8, as a function of the channel bit-error rate.

PE>T
0

10

10

1078 1078 1074 1072 10°

Channel Bit-Error Rate

Figure 4. Probability of Uncorrectable Error Versus Bit-Error Rate

Notice that for bit-error rates below 1072, the curve exhibits a very steep slope. This is characteristic for good
codes. It implies that the chances of encountering an uncorrectable error decrease drastically with only a
moderately improved bit-error rate.

3 SC140 Core Overview

The SC140 core (see Figure 5) is a programmable high-performance DSP core that uses parallelism to execute
multiple instructions in one clock cycle, running currently at 275 MHz and, eventually, at 400 MHz.

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

10 Freescale Semiconductor

SC140 Core Overview

Unified
Data/Program Memory
A
< m < o
a 2 2 oo 8 164 O 164
o8 &3 Rk RTUXIT.
| 128)
| < A 1
| |
| |
| |
I A4 A4 A4 A4 A4 I
| |
: Program Address Generator Data ALU EONnCE : Instruction Set
'| Sequencer Register File Register File ! Accelerator
| |
: + Power : ™y
I Management| |
| r |
| Clock ! 24
| 2 AAUs BMU 4 ALUs Generator | |
| |
! y y y PLL [
! Instruction Bus :
| 128 |
| |

Figure 5. SC140 Core

The SC140 core provides the following main functional units:

¢ Data-arithmetic and logic unit (DALU) that includes four data-arithmetic and logic units (ALU) and a
bank of sixteen 40-bit registers, dO to 15.

e Address-generation unit (AGU):
— :Sixteen 32-bit address read/write registers, 10 to r15. The contents of an address register can either
point directly to data or function as an index.

— Two AAUSs, each of which can update one address register during one instruction cycle.
* Program sequencer and controller (PSEQ).
* Memory interface:

— A 32-bit program memory address bus (PAB) and a 128-bit program memory data bus (PDB).

— Two data memory buses (32-bit address and 64-bit data bus pairs: XABA and XDBA, XABB, and
XDBB).

The SC140 core uses a unified memory space. Each address can contain either program information or data. There
are no separate memory spaces for program locations and data locations. The memory is made up of a number of
32 KB groups, and each group includes eight 4 KB modules. Memory contention, which causes a one-cycle stall,
can arise if two data accesses are to two different rows in the same memory module. The instruction set supports
various types of move instructions that differ in access width (byte, word, long word, two long words), data type
(signed, unsigned) and multiple-register moves. Integer moves from memory (byte, word, long, two long) are right
aligned in the destination register, and by default are sign-extended to the left. Unsigned moves are marked with

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 11

Implementation on the SC140 Core

“U” (for example, MOVEU.B), and zero extended to the destination register. Figure 6 shows a schematic
representation of some integer moves from memory to a register, used in the current implementation. The SC140
core can execute six instructions concurrently: up to four DALU instructions and up to two AGU instructions. The
instructions are grouped together in an execution set and dispatched in parallel to the execution units. Chapter 6 in
ref. [7] contains an overview of the instruction set, and in particular, the instruction set restrictions. Also, refer to
Section A, C-Codes for Decoder, on page 20, for details on the assembly commands. For software development,
StarCore offers the SC100 C compiler, assembler, simulator, and linker. The first three tools are employed in this
implementation.

39 8 0
MOVE.B (signed byte move) sign extension

39 16 0
MOVE.W (signed word move) sign extension

39 32 0

. sign

MOVE.L (signed long move) extension

39 16 0

sign extension

MOVE.2W (signed double word move) ; .
sign extension

39 32 0
sign
extension
MOVE.2L (signed double long move) sign
extension
39 16 0

sign extension

sign extension

MOVE.4W (signed four-word move) . .
sign extension

sign extension

Figure 6. Integer Move Instructions

4 Implementation on the SC140 Core

The current application is in accordance with the standard for ADSL systems given in ref. [8]. The Galois field is
GF(256) and the primitive polynomial is / +x2+x7 +x*+x8. The block size N equals 255 bytes and the parameter T’
varies from 1 to 8. When the Reed-Solomon algorithm is implemented on a DSP, all routines, except for the
Berlekamp-Massey algorithm, must perform polynomial evaluation in one way or another. Since most cycles of the
application are spent on polynomial evaluation on a given set of field points, the major effort focused on
implementing this operation as efficiently as possible under reasonable memory constraints. This section analyzes
that implementation process, which used the following tools:

* Enterprise StarCore C Compiler.
* Assembler.
* Simulator.

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

12 Freescale Semiconductor

Implementation on the SC140 Core

The encoding/decoding process for which the cycle count is to be determined is summarized as follows. The
encoder receives a message, a Reed-Solomon-compliant block of K = 239 bytes, and it produces an encoded block
of 255 bytes. The encoded block is transmitted through the channel to a receiver. The received block is passed to
the decoder where the four different stages of decoding are performed, as outlined in Section 2.2, Reed-Solomon
Codes, on page 6. First-order estimates for the cycle counts required for this encoding/decoding process are as
follows (see, for example, [5] and [6]):

1. Encoding routine o< 2NT cycles.

2. Syndromes calculation < 2NT cycles.

3. Berlekamp-Massey algorithm o< T° cycles.
4. Search of roots o< NT cycles.

5. Forney algorithm o< T’ cycles.

These are only initial estimates that do not account for any potential parallel processing. However, it clearly shows
that encoding, syndromes calculation, and roots search consume the most cycles in the Reed-Solomon algorithm.
The actual cycle counts depend both on the architecture and on the degree to which each routine can be separately
implemented in a parallelized fashion. The decoder output is one of the following:

* For all-zero syndromes, the received block is identified as error-free and the program terminates.

» If the degree of the error-location polynomial exceeds 7, or if the number of roots is not equal to the
degree of the error-location polynomial, the received block contains more than 7 erroneous symbols. A
flag is raised to indicate that errors are detected but are uncorrectable and the program terminates.

* Inevery other case, the reconstructed encoded block is returned.

4.1 Polynomial Evaluation Over GF(256)

Evaluation of a polynomial f{x) of degree D at field point o has the most general form:

APy = o+ fio +£,07 + 077 fpo

This form shows that the polynomial evaluation consists of a sequence of MAC (multiply-accumulate) operations.
In Reed-Solomon codes, a polynomial is typically evaluated at a set of points. For example, let us assume that we
evaluate the polynomial f{x) at field points o, o , o’ yerers oM This is conveniently represented in matrix form, as

multiplication of an M X (D+1) matrix. The elements, o, are raised to the appropriate powers, are multiplied by a

vector:

1o o o ... o _fo_ Sflo)
1o 0 @) @D A D
1 od (@ (@) @ TR

M
1o (o) o) oMl e

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 13

Implementation on the SC140 Core

Matrices of this form are called power matrices. Thus, polynomial evaluation over a set of field points is called
matrix multiplication. The basic operation is an inner vector product of the vector by the matrix row vector, which
is equivalent to a sequence of MAC instructions under Galois algebra. How to efficiently implement these MAC
instructions is the subject of the next section.

4.2 MAC Instructions Over Galois Fields

The two alternative ways to support Galois arithmetic, namely the binary representation and the exponential
representation, are introduced in Section 2.1.2, Extended Galois Fields GF(2m). As noted there, addition is easy in
a binary representation and multiplication is easy in an exponential representation. A series of MAC instructions
over a Galois field is an alternating series of multiplications and additions. Difficulties are encountered in either
representation.

A first approach is to stay within the framework of the binary representation and to create a multiplication table,
indexed by the multiplication operands, with entries as the product. This solution is fast but requires a large
memory. For GF(256), the required table size is 64 KB, which is impractical for typical DSP memories. A second
approach is the extreme opposite, requiring no memory at all. In this approach, multiplication is simply performed
bitwise by carry-less multiplication of the two binary operands, followed by the division by the primitive
polynomial over GF(2). This method is slow and inefficient. A third method is to perform addition in binary
representation and multiplication in exponential representation and to perform the conversions between the two
representations with the aid of look-up tables. In this particular software implementation, we chose this third
approach because it offers the most reasonable trade-off between execution speed and memory conservation.

4.3 Look-up Tables

For a look-up table implementation, the following three types of tables are used:
* A binary-to-exponential conversion table with the exponent as entry and the Galois number as index.
* An exponential-to-binary conversion table with the exponent as index and the Galois number as entry.
* A power matrix of the kind introduced in Section 4.1.

The zero element deserves particular attention since its exponent must be defined. A suitable exponent is attributed
to the zero element on the basis of the laws that such an exponent must obey if two Galois numbers, at least one of
them a zero, are multiplied. The exponent of the product of two Galois numbers is the sum of their individual
exponents, modulo 255 (or modulo 2" -1 for a general Galois field). However, if at least one of the factors is zero,
the exponent of the product must be equal to the exponent of the zero element. Following is one way to implement
Galois multiplication efficiently while taking care of the zero element:

1. Associate the exponent 511 (or 211 fora general Galois field) to the zero element.

2. Extend the basic exponential-to-binary table whose exponents range from 0 to 254 to a table whose
exponents range from 0 to 510. To accomplish this step, replicate the exponential-to-binary table
entries for exponents exceeding 255 and append a zero byte at index 511.

If both operands differ from zero, the sum of their exponents is less than 511 and is a valid index to the table. If one
or more of the original operands is zero, the sum of exponents exceeds 511. Since the exponent of the end result
must be 511, multiplication is correctly performed by taking the minimum between the sum of the exponents and
511. The tables use in this implementation are as follows:

* bin_2_exp. Binary-to-exponential table, 256 words long. Indices are the Galois numbers in binary
form and entries are their corresponding exponents. The first entry is equal to 511.

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

14 Freescale Semiconductor

Implementation on the SC140 Core

* exp_2_bin_extended. Exponential-to-binary table, 511 bytes long. Indices are the exponents and
entries are the corresponding Galois numbers in binary form. The last entry is equal to 0.

* exp_table_for_syndrome. Power matrix for polynomial evaluation, 16 x 256 words in size. It has the
typical form presented in Section 4.1, Polynomial Evaluation Over GF(256), on page 13. M is at most
2T and is thus chosen to be 16.

4.4 Lowest Cycle Count Limit for Polynomial Evaluation

The most general polynomial evaluation has the form presented in Section 4.1, Polynomial Evaluation Over
GF(256), on page 13. We assume that the entries of the input vector are represented as binary and the power matrix
is stored in exponential form. For a vector of length D+1 and field points c, o? , o’ yeeens oM , the C-code for
polynomial evaluation is then given by the following example:

Example 1. C Code for Matrix Multiplication

for (i=0; i<M; i++)

{

acc =0

for (j=
{
x_power = bin 2_exp[vector[j]l];
v_power = exp_table_for_syndromel[i][j];
power = MIN((x_power + y_power),2*N+1);
acc "= exp_ 2_bin_extended[power];

iesult[i] = acc;
}
For each field element, two table look-ups are needed for each term. The first table look-up converts the
polynomial from binary to exponential form. To save cycles, this conversion is performed separately, prior to
entering the polynomial evaluation routine. This binary-to-exponential conversion contributes a small overhead to
the total cycle count of the routine. It is implemented in the following steps:

0; j<=D; j++)

1. Get the current vector element in binary form.

This requires one MOVEU.B (rx) instruction, where rx denotes a general AGU register.

2. Add this byte to the table basic address and transfer the resulting address into an AGU register.
This requires a MOVE.L command.

3. Read the table entry via a MOVE.W (rx) command.

A maximum of two move instructions can execute in one cycle. Thus, assuming full parallelization, for every
polynomial term, a minimum of two cycles is needed in the conversion routine.

If the degree of the polynomial is D and the number of field points is M, a gross estimate for the number of cycles,
denoted as C,.,,, ¢ sion required, is givenby C_ .. =2(D + 1).The code shown in Example 1 involves the
import of data and table look-ups, which are both AGU-based operations. The execution sets therefore are filled by
AGU instructions rather than by DALU instructions. Thus, as in the binary-to-exponential conversion routine, the
number of AGU operations is the critical factor in determining the cycle count.

The two methods of choice to implement polynomial evaluation in assembly code are split-summation and multi-
sampling. In the split-summation method, one term in the result vector is calculated in every iteration. The inner
product of each row with the input vector is divided into four partial sums by loading four matrix and four vector

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 15

Implementation on the SC140 Core

terms in the same cycle and performing the MAC operations. If the number of terms in the input vector does not
divide by four, the input vector is a priori zero-appended to bring the number of elements to an integer multiple of
four.

In the multi-sample method, all result vector terms are calculated simultaneously, step by step, in each iteration.
This is performed by loading the matrix elements column-wise instead of row-wise. Zero-appending is done if
needed. The inner loop of code Example 1 is implemented by the split-summation method in the following steps:

1. Load four matrix and four input vector terms.

2. From the four pairs of exponents, get the four exponents of the products. Those exponents are the off-
sets from the base address of the exponential-to-binary conversion table.

3. Retrieve the four table entries at those four offsets and XOR them with the accumulator.

The theoretical minimal number of cycles needed to realize these steps is as follows:

1. Loading the matrix and vector elements requires two MOVE.2L instructions.

2. The table offsets are addresses of four bytes. After their calculation, they must be transferred into four
AGU registers. This requires four MOVE.L instructions.

3. The four table entries are bytes that are separately accumulated using four MOVEU.B (rx) instruc-
tions.

Thus, the total cycle count for the inner loop is five cycles per polynomial term, for four field points. In other
words, under full parallelization, one MAC operation consumes 1.25 cycles. The theoretical minimal cycle count
C,,i, 1 given by:

min

C,. = SM((_I_)_I_DW

where [] denotes rounding up to the nearest integer. If the input polynomial is represented in binary form, the
theoretical minimal cycle count becomes:

C,.. = SM((_QE_QW +2(D+1)
In addition to this basic cycle count, a small overhead is required in the actual implementation.

4.5 Cycle Count of the Reed-Solomon Routines

The theory enables estimation of the cycle count required to execute the C code for each routine. Following are
summary estimates for each routine. The C code for the decoder routines is presented in Appendix A on page 20:

* Encoding routine. A series of two concatenated polynomial evaluations, with M equal to 27 and D
equal to 255 or 27-1, respectively. Therefore, the encoder routine requires at least 680T + 544 cycles,
not including overhead.

* Syndromes calculation. A simple polynomial evaluation, with M equal to 27 and D equal to 255.
Therefore, the lower bound on the cycle count is 6407 + 512 cycles, not including overhead.

* Berlekamp-Massey Algorithm. This algorithm is highly serial and parallelism cannot be applied. The
error-location polynomial A(x) is calculated iteratively and bytewise. There are 2T iterations during
which mostly MAC operations are performed. The exact number of MACs is data-dependent, but it
can be approximated by T + n,,,,,s (2/T). In this implementation, optimization was performed on the
compiled code. Since it is not possible to perform these MAC operations with inputs a priori in
exponential form, an order of 10 cycles is needed for each MAC instruction.

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

16 Freescale Semiconductor

Results

* Roots Search. An evaluation of A(x) on all field points. Each of the 256 results is subsequently
screened for zeroes. M in this kernel is equal to 256 and D is equal to 7+1. If the split-summation
method is applied similarly to the syndromes-calculation kernel, a second power matrix, namely the
transpose of the exp_table_for_syndrome matrix, is required. To conserve memory, we simply invert
the order of the loops in code Example 1 and apply the multi-sample method instead of split-
summation. This is conceptually equivalent to interchanging the roles of M and D. Furthermore, unless
T + 1 is a multiple of four, the split-summation method wastes many cycles on useless calculations.
Therefore, an additional benefit gained by choosing the multi-sample method is that the cycle count
becomes directly proportional to 7. The price of using the multi-sample method is that there are not
enough registers to complete the inner loop in five cycles. In this case, the inner loop requires six
cycles instead of five. The lower bound on the cycle count is 3847 + 384 cycles, not counting cycles
required for zero-screening. The zero-screening procedure is performed by reading the results byte-
wise and testing for zero. This is performed two cycles per byte and thus requires 512 additional
cycles. Summarizing these factors, the lower bound on the cycle count is 3847 + 896 cycles, not
including overhead.

* Forney algorithm. A series of three concatenated polynomial evaluations. However, the entries into
the power table are the error locations, which are randomly distributed. Thus, the power table is not
read continuously from the power table. This adds two cycles to the inner loop. The cycle count, not
including overhead, is at least:

7(nerr0rs + T)lrg—‘ + 7nermm’7n_____€}14rors—‘ +6T

5 Results

This section presents the cycle count simulation results for the various decoder routines. All results in this section
are for the case of 7= 8.

Syndromes Calculation Berlekamp-Massey Algorithm
6000 %% % % ¥ ¥ % % 4000 ‘ ‘ ‘ 3
: : : : : L%
| | | 3000 | R e T
4000 ------ T o o ! * :
: : o epnn | Los S
- 2000
2000 ------ P A o * : :
| | | 1000 - o o o
0 : : : 0 : : :
0 2 4 6 8 0 2 4 6 8
Chien Search Forney Algorithm
woo [* Fx b xbay O A
: : : : L%
3000 - SRR R SRREEE 400 - SRR AR SRREES
: : : « ¥ ‘
2000 RNEEE LR 7
: : : 200 - P A AR
1000 - - R S AR ‘ ‘ ‘
0 : : : 0 : : :
0 2 4 6 8 0 2 4 6 8

Figure 7. Average Cycle Count of Decoder Routines, as a Function of ngs

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 17

Results

15000

14000

13000

12000

11000

10000

9000

8000

7000

6000

5000

Total cycle count

*

Figure 8. Average Cycle Count Sum of Decoder Routines, as a Function of Ngqorg

The assembly code for matrix multiplication contains the potential for one contention in one of the five cycles of

the inner loop, since the table exp_2_bin_extended is accessed twice in the same cycle. The probability per
contention is 1/16. Table 2 and Table 3 depict the results obtained for the ADSL application. The symbol time is
246.4 psec. Assuming that the DSP runs at 300 MHz, the full processor load is 73,920 cycles. The results are

obtained in the worst case, in which both T and n

errors

equal 8.

Table 2. Encoder Routine

Encoder Average Cycle Count Worst Case Cycle Count MCPS @300 MHz
Encoding 6359 6500 24.0
routine
TOTAL 6359 6500 24.0
Table 3. Decoder Routine
Decoder Average Cycle Count Worst Case Cycle Count MCPS @300 MHz
Syndromes 5772 5894 21.8
calculation
Berlekamp- 3810 3816 14.5
Massey
Roots search 4128 4128 15.6
Forney 587 590 2.1
TOTAL 14,298 14,428 54.0

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

18

Freescale Semiconductor

Summary

Notice the syndromes calculation and the root search. The theoretical lower bounds for syndromes calculation and
root search for 7' = 8 are 5664 and 3968 cycles, respectively. As Table 2 and Table 3 show, the actual cycle count
in this implementation is very close to the lowest theoretical bound.

6 Summary

This application note demonstrates the implementation of the Reed-Solomon encoder and decoder on the SC140
core. The implementation is in accordance with the standard for ADSL systems, using Galois field GF(256) and T
equal to 8. Encoding and decoding is performed by the Petersen-Gorenstein-Zierler (PGZ) algorithm. The
algorithm consists mainly of polynomial evaluations over a set of Galois field points, which is equivalent to a
sequence of MAC operations in the framework of Galois arithmetic. The emphasis is on efficient implementation
of MAC operations on the DSP, under the constraint of reasonable memory requirements. The two most cycle-
intensive routines, syndromes calculation and roots search, perform straightforward polynomial evaluations for
which full parallelization is possible. Thus, we conclude that since most of the cycle-intensive algorithms can be
parallelized, the architecture of the SC140 can be very efficiently employed in the Reed-Solomon application.

7 References

[1] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27,
1948, pp. 379423 and pp. 623-656.

[2] E. R. Berlekamp, R.E. Peile and S.P. Pope, “The Application of Error Control to Communications,” /[EEE
Communications Magazine, vol.25, no 4, 1987, pp.44-57.

[3] V. Bhargava, “Forward Error Correction Schemes for Digitized Communications,” IEEE Communications
Magazine, vol.21, no 1, 1983, pp.11-19.

[4] I.S. Reed and G. Solomon, Polynomial Codes Over Certain Finite Fields, Journal of Soc. Ind. Appl. Math,
vol.8, p.300-304 and Math. Rev., vol23B, p.510, 1960.

[5] S. Lin and D.J. Costello, Error Control Coding: Fundamentals and Applications, Prentice Hall:
Englewood Cliffs, NJ, 1983.

[6] R.E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley: Reading, MA, 1984.
[7] SC140 DSP Core Reference Manual, Freescale Semiconductor, (MNSC140CORE/D).
[8] ITU standard G.992.1.

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 19

References

Appendix A: C-Codes for Decoder

Example 2. C-Code for Syndromes Calculation

void calculate_syndrome (BYTE *received_block, BYTE *syndromes)

{

int i, Jj;

BYTE acc;

WORD x_power, y_power, power;

for (i=0; 1<2*T; i++)

{

acc = 0;

for (j=0; j<255; j++)

{
x_power = bin 2_exp[received_block[jl];
y_power = exp_ table_for_ syndrome[i][j];
power = MIN((x_power + y_power),2*N+1);
acc "= exp 2_bin_extended[power];
}

syndromes [1] = acc;

Example 3. C-Code for Berlekamp-Massey Algorithm

void berlekamp (BYTE *s, WORD *error_loc_poly, BYTE *error_loc_bin)

{
WORD x_power, y_power, power;

BYTE temp_sigmal[2*T+2] [2*T], (*sigma) [2*T], *ptrl,

int temp_1_mu[2*T+2], *1_mu;

int temp_mu_1 mu[2*T+2], *mu_1_mu;
BYTE temp_d[2*T+2], *d;

int p, max_p_lp, mu;

BYTE inv, factor, sum;

int i, j, shift;

/* Initialize */
sigma = &temp_sigmal[l];
d = &temp d[l];
1 mu = &temp_1 mull];
mu_1l_mu = &temp mu_1_mull];

for (3=0; J<2*T; J++)
{

sigma[i] [j] = O;
}

sigma[-1]1[0] = 1;
d[-11 = 1;

1 mu[-1] = 0;
mu_1 mu[-1] = -1;
inv = 1;
sigma[0] [0]
d[0] = s[0];
1 mu[0] = O;
mu_1 mu[0] = O;
p = -1;
max_p_1lp = -1;

1l
[N

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

20

Freescale Semiconductor

References

for (mu=0; mu<2*T; mu++)

{
/* assume sigmal[mu] = sigmal[mu-1] */
for (i=0; i<=l_mu[mul; i++)
{
sigma[mu+l] [i] = sigmal[mu] [i];
}
1 mulmu+l] = 1_mu[mu];

mu_1 mu[mu+l] = mu+l - 1_mu[mu+l];

if (d[mu] != 0)

{

/* if discrepancy is not zero, correct sigma[mu] */
x_power = bin_2_expl[d[mu]];

v_power = bin_2_expl[inv];

power = MIN((x_power + y_power),2*N+1) ;

factor = exp_2_bin_extended[power] ;

for (i=0; i<=1l_mu(p]; i++)
{
x_power = bin_ 2_exp[factor];
v_power = bin_2_expl[sigmalp]l [i]1];
power = MIN((x_power + y_power),2*N+1);
sigma[mu+l] [mu - p +i] "= exp_2_bin_extended|[power] ;
}
shift = 1_mul[pl+ mu-p;
1_mu[mu+l] = MAX(1_mu[mu],shift);
mu_1_mu[mu+l] = mu+l - 1_mu[mu+l];
/* update p */
if (mu_l mu[mu] >= max_p_1lp)
{
p = mu;
max_p_lp = mu_l1_mu[mu];
power = N - bin 2_expl[dlpl];
inv = exp_2_bin_ extended|[power];

}
}

/* calculate d[mu+l] */

sum = s[(mu+2)-11;

for (i=1; i<=l_mu[mu+l]; i++)
{
x_power = bin_ 2_expl[sigma[mu+l1][i]];
v_power = bin_2_expl[s[(mu+2-i)-11];
power = MIN((x_power + y power),2*N+1);
sum "= exp_2_bin_extended|[power] ;
}

d[mu+l] = sum;

}
for (i=0; i<2*T; i++)
{
error_loc_poly[i] = bin_2_expl[sigmal[2*T][i]];
}

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 21

References

Example 4. C Code for Roots Search

int roots_search(BYTE *roots, WORD *error_loc_poly, WORD *roots_poly, BYTE*
error_locations)

{

int i,3;

BYTE acc;

WORD x_power, Yy _power, power;

int k = 0;

int n_roots = 0;

for (i=0; i<256; i++)
{
roots[i] = 0x00;

}

for (i=0; i<(T+1); i++)
{
x_power = error_loc polyl[i];
for (j=0; j<256; j++)
{

v_power = exp_table_for_syndrome[i] []];
power = MIN((x_power + y_power),2*N+1) ;
roots[j] "= (exp_ 2_bin_extended[power]) ;
}

}

for (i=0; i<256; i++)

{
if (roots[i] == 0)
{
n_roots++;
roots_poly[k] = i;
error_locations[k] = (N-1) % N;
k++;
}

}

return n_roots;

Example 5. C Code for Forney Algorithm

void forney(BYTE *s, WORD *elp, BYTE *el, DWORD n, BYTE *err_locs, WORD *roots,
BYTE *block)

{

WORD z[T+1];

BYTE temp, nom, denom;

WORD XxX_power, Yy _power, power;

int 1,3;

/* Determine the error evaluator polynomial Z(x) */

temp = s[0] *~ el[l];
z[0] = bin_2_expl[temp];

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

22 Freescale Semiconductor

for

for

Appendix B: Assembly Codes for Decoder

(i=1; i<n; 1i++)

{

temp = s[i] ~ el[i+l];
for (j=0; j<i; j++)

{

v_power = bin 2 _exp[s[i-j-111;

power = MIN((elp[j+1] + y_power),2*N+1) ;
temp "= exp_2_bin_extended[power] ;

}
z[1i] = bin_2_exp[temp];
}
(1=0; i<n; 1i++)
{

nom = 0x01;

denom = 0x00;
for (j=0; j<n; j++)
{
x_power = exp_ table for syndrome[j][roots[i]];
power = MIN(x power + z[j],2*N+1);
nom "= exp_2_bin_extended[power] ;
}
for (j=1; j<=n; j+=2)
{
x_power = exp_ table_ for syndrome[j-1][roots[i]];
power = MIN(x _power + elp[j],2*N+1);
denom "= exp_2_bin_ extended|[power];

}

x_power = bin_2_exp[nom];

v_power = N - bin_2_exp[denom] ;

power = MIN(x_power + y_power,2*N+1);

block[err locs[i]] "= exp_2_bin extended[power];
}

Example 6. Assembly Code for Syndromes Calculation

References

PRI R I I S e I e I S R S I S I S R R S R e e I S R R S S R S R o e I S o S b S S e R I S I
1

.k

i

.k

i

i

*

Reed-Solomon error correction algorithm

;* STARCORE 140 ASSEMBLY

.k

i

*

*

*

*

P I S I I S S R S I S R S S IR S R S R e I S R R S S IR S S R o I S o S I S S e R R S I
i

i

*

.k

i

.k

i

Module Name: calculate_syndrome.asm

*

*

*

P I I I S S I S I S R S I S R S R S S R I S R R S S R S R o e e I S o S b S S e R R S I
i

.k

i

i

*

.k

i

Calling convention from C:

calculate_syndrome (received_block,

*

syndromes) *
*

PR I R S I o I S S I I S R S S IR S R I I S R S R S R S S R I S o S I S S R R S I
i

.k

i

.k

i

i

*

.k

i

INPUT: r0 : BYTE received_block [N+1]

Received block of 256 bytes, zero-extended by one byte

*

*

*

*

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

23

References

;* OUTPUT: rl

. %
i

BYTE syndromes[2*T]

2T syndromes

*

*

EEEE S S SRS SRR LSS RS EEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. %
i

;* FUNCTION

;* PERFORMANCE: Average cycle count
Worst case cycle count

*

Evaluates 2T syndromes defined as evaluating the *
received block viewed as a polynomial over GF(256) at field *
points alpha, alpha”2 alpha”2T. *
*

*

5772 *

;* ALIGNMENT REQUIREMENTS:

&received _block[0] should be aligned 8

&syndromes [0] should be aligned 8

5894

EEEEE S EEEEEE S SRR LSS RS SRR EEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

section .text local
TextStart_calculate_syndrome

; Define macros

N equ 256
TT equ 16

; Allocate space for the local variables on stack pointer

allocation

block off
temp2_off
temp3_off
tempd_off
temp5_off
temp6_off
temp7_off
temp8_off

global _calculate_syndrome

align 16
opt lpa

equ 536

equ
equ
equ
equ
equ
equ
equ
equ

allocation-0
block off-2*N
temp2_off-4
temp3_off-4
tempd_off-4
temp5_off-4
temp6_off-4
temp7_off-4

_calculate_syndrome typefunc

; Overhead

START_SYNDROME

push dé
push r6

push d7
push r7

adda #allocation, sp,r6
tfra r6,sp

adda #-block_off, sp,rl0
adda #-temp2_off, sp,r2
adda #-temp3_off, sp,r3
adda #-temp4d_off,sp,r4d
adda #-temp5_off, sp,r5
adda #-temp6_off, sp,r6
adda #-temp7_off, sp,r7
adda #-temp8_off, sp,r8

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

24

Freescale Semiconductor

doen3 #N/4

References

; N = length of vector

dosetup3 LOOP_ON_BLOCK

move.l # _bin 2_exp,d0

[clr dl clr d3
clr d5 clr d7
tfra rl0,r8 move.l (r0)+,d2 first 4 vector entries -> d2

]

[asrr #8,d2 insert #8,#1,d2,d1l ; 2 x 1-st vector entry -> dl
tfr d0,d14

]

[asrr #8,d2 insert #8,#1,d2,d3 ; 2 x 2-nd vector entry -> d3
add d0,d1,dl ; 1l-st table index ->dl1

]

[asrr #8,d2 insert #8,#1,d2,d5 ; 2 x 3-rd vector entry -> d5
add di14,d3,d3 ; 2-nd table index ->d3
move.l dil,r3 ; 1l-st table index -> r3

]

[add di4,d5,d5 insert #8,#1,d2,d7 ; 2 x 4-th vector entry -> d7

move.l d3,rd

[add di4,d7,d7
move.l d5,r5

1

; Main loop. Here, the tabl
; ranging from 0 to #N/4-1.

loopstart3
LOOP_ON_BLOCK

[clr dl
clr d5
move.l

1

(r0)+,d2

; clear di,d3,d5,d7

; vector entries [5,6,7,8+i]-> d2

[tfr di14,d0
asrr #8,d2
move.w (r3),d4
]
; copy #_bin_2_exp to d0
; vector entry [6+i] -> d2

; result[l+i] -> d4

[asrr #8,d2
add do,d1,d1
move.w (r5),d0

1

; vector entry [7+i] -> d2
; table index[5+i] ->dl1
; result[3+i] -> dO

e lookups are done."i" is

clr d3
clr 47
move.l d7,r6

table index[4+1] -> 16

insert #8,#1,d2,d1
move.f (r4),dé

2 x vector entry[5+i] -> dl

result[2+1] -> upper portion of dé6

insert #8,#1,d2,d3
eor d6,d4
move.f (r6),d6

2 x vector entry[6+i] -> d3
unify result[1l+i] and result[2+i] into d4
result[4+1] -> upper portion of dé6

2-nd-st table index -> r4

4-th table index -> d7
3-rd table index -> r5

the index of the iteration,

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

25

References

[

1

asrr #8,d2 insert #8,#1,d2,d5
add di4,d3,d3 eor d0,d6
move.l dl,r3

; vector entry [8+i] -> d2 2 x vector entry[7+i] -> d5
; table index[6+i] ->d3 unify result[3+i] and result[4+i] into d6
; table index[4+i] -> r3

[

1

add di4,d5,d5 insert #8,#1,d2,d7
move.l d3,rd move.l d4, (rl0)+

; table index[7+i] ->d5 2 x vector entry[8+i] -> d7
; table index[6+i] -> r4 write results[l+i,2+i] into rl10

[

1

add di4,d7,d7
move.l d5,r5 move.l d6, (rl0)+

; table index[8+i] ->d7
; table index[7+i] -> r5 write results[3+i,4+1i] into rl0

loopend3

doen2 #TT
dosetup2 LOOP_ON_ALPHA

move.l # exp 2 _bin extended,dl4
move.l # exp table for syndrome,r2

tfra r8,rl0

move.w #$1ff,d0 move.w #$S1ff,dl
dosetup3 LOOP_ON_BLOCK_POLY

tfra rl1l0,r8

loopstart?2

LOOP_ON_ALPHA

; For the software pipeline, d2,d3,d4 and d8 are prepared to l-st iteration
; while d5,d6,d7,d13 are cleared (= i.e. prepared to the 0-th iteration)

[clr d15 doen3 #N/4 ; clear accumulator dil5
tfra r8,rl0 ; reset ptr to vector start
]
[move.21 (rl0)+,dl0:dllmove.21 (r2)+,d8:d9 ; table entries [1..4]->
dg:d9
] ; vector entries [1..4] ->
dlo:d11
[add2 d8,dl10 add2 do,dil ; 4 sum of exponents ->
dlo:d11
tfr di,dl2 ; (to be separated later)
] ; 511 in dl and di12
[zxt.w d10,d5 zxt.w dl1,d3 ; 1l-st sum of exponents -> d5
tfr di,d7 asrw dl10,d4 ; 3-rd sum of exponents -> d3
1 ; 2-nd sum of exponents -> d4
[min d1,d5 min d3,d7 ; 1-st,3-rd offset -> d5,d7
min d0,d4 asrw dll1,d8 ; 2-nd offset ->d4

1

; 4-th sum of exponents -> d8

; d4,d8 are now initialized for the inner loop

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

26

Freescale Semiconductor

References
[add d14,d5,d2 add di14,d7,d3 ; 1l-st,3-rd table index -
>d2,d3
]
; d2,d3 are now initialized for the inner loop
[clr d7 clr di3 ; results[-3,-2,-1,0]=0
clr d5 clr dé6
move.21l (rl0)+,d10:d11 ; vector terms [5,6,7,8]->
dlo:d11

1

; Main loop. Here the MACs over GF(256) are done."i" is the index of the
iteration,

; ranging from 0 to #N/4-1.Results with indices -3 ... 0 -> results were
initialized ; to zero.

loopstart3
LOOP_ON_BLOCK_POLY

[add dl14,d4,d4 eor d7,dl15
tfr di,d7 min d8,dl12
move.l d3,rd move.21 (r2)+,d8:d9

]
; table index[2+i] -> d4 result[1l+4(i-1)] is added to accumulator
; copy 511 into d7 offset[4+1] -> d12
; table entries[5+i..8+i]->d8:d%able index[3+i] -> r4

[add2 d8,d10 eor d5,dl15
add di4,d12,d5 add2 d9,di1i
move.l d4,r3 move.l d2,r6
]
; sum of exponents([5,6+i] -> dl10 result[1l+4(i-1)] is added to accumulator
; table index[4+i] -> d5 sum of exponents[7,8+i] -> dll
; table index[2+i] -> r3 table index[1+i] -> r6
[zxt.w d10,d5 eor d6,dl15
zxt.w dll,d3 asrw dl0,d4
move.l d5,r5 moveu.b (r4d),dé6
]
; sum of exponents [5+i] -> d5 result[3+4(i-1)] is added to accumulator
; sum of exponents [6+1]-> d4 sum of exponents [7+i] -> d3
; table index[4+i] -> r5 result[3+i] -> d6
[min d1,d5 eor dl3,dl5
min d3,d7 asrw dll,d8
moveu.b (r3),d13 move.21 (rl0)+,d10:d11
]
; offset[5+i] -> d5 result[2+4(i-1)] is added to accumulator
; offset[7+i] -> d7 sum of exponents[8+i] -> d8
; result[2+4i] -> d13 vector terms [9+1..12+i]-> d10:d11
[add di14,d5,d2 min d0,d4
add di4,d7,d3 tfr di,dil2
moveu.b (xr6),d7 moveu.b (r5),d5
]
; table index[5+i] -> d2 offset[6+i] -> d4
; table index[4+i] -> d3 copy 511 into dil2
; result[l+i] -> d7 result[4+i] -> d5
loopend3

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 27

References

; Sum up the last results to accumulator and write the result into AGU register
rl.
END_LOOP_ON_BLOCK_POLY

eor d7,dl5
eor d5,d15
eor dl13,d15
eor d6,dl5
move.b dl5, (rl)+ suba #8,1r2

loopend2

adda #-allocation, sp,r6

tfra r6,sp
pop r6 pop r7
pop dé pop d7

END_ SYNDROME
rts

global Fcalculate_syndrome_end
Fcalculate_syndrome_end

TextEnd_calculate_syndrome
endsec

Example 7. Assembly Code for Berlekamp-Massey Algorithm

RS ST EE RS E SRR SRS SRR EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

P * *
P * *
;* Reed-Solomon error correction algorithm *
.k *
;* SC140 ASSEMBLY *

.k *

i
RS S E SRS SRR LRSS SRR EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. x *
;* Module Name: berlekamp.asm *
. x *

i
EEEEE S SRS S S E SRR LSS E SRR EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. x *
;* Calling convention from C: *
;* berlekamp (syndromes, error_loc_poly, error_loc_poly bin) *
. x *

i
EEEEE T EE RS ES SRS EEE SRS SRR EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

.k *
;* INPUT: rO : BYTE syndromes [2*T] *
P* 2T syndromes *
;* *
;* OUTPUT: rl : WORD error_loc_poly[2*T] *
;* Error location polynomial in exponential form *
i * (sp-588) : BYTE error_loc_poly bin[2*T] *
;* Error location polynomial in binary form *
* *

EEEEE T EEE RS S S S EEEEEEE SRS SR EEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. % *
i

;* FUNCTION : Deriving the error location polynomial by Berlekamp’s iterative *

i algorithm. This is a compiled code which has been slightly *
i * modified by applying software pipelining applied and efficient *
;¥ register allocation. *
P * *
;* PERFORMANCE: Cycle count: *

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

28

Freescale Semiconductor

References
;* *
;* #errors = 0 -> 0 cycles *
;* #errors = 1 -> 1317 cycles *
;* #errors = 2 -> 1716 cycles *
;* #errors = 3 -> 2082 cycles *
;* #errors = 4 -> 2472 cycles *
;* #errors = 5 -> 2829 cycles *
;* #errors = 6 -> 3172 cycles *
;* #errors = 7 -> 3501 cycles *
;* #errors = 8 -> 2816 cycles *
;* *
;* *
;* ALIGNMENT REQUIREMENTS: *
* *
P* &syndromes [0] should be aligned 8 *
P* &error_loc_poly[0] should be aligned 8 *
i* &error_loc_poly_bin[0] should be aligned 8 *
* *

EEEEE S EEEEEE S S SRR SRS SRR EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

section .data local

align 8
F__MemAllocArea

ds 13056 ; gap
Dexternal_aliased

ds 4 ; offset = 13056
Dsoft_stack

ds 4 ; offset = 13060
Dasm_3

ds 4 ; offset = 13064
Dasm_2

ds 4 ; offset = 13068
Dasm 1

ds 4 ; offset = 13072

ds 1 i gap
Dasm 4

ds 1 ; offset = 13077

alignd

endsec

section .text local
TextStart_berlekamp

bb_cs_offset_ berlekampequl; At _berlekamp sp = 0

bb_cs_offset_DW_2equ2 ; At DW_2 sp = 2
bb_cs_offset_DW_3equ4d ; At DW_3 sp = 4
bb_cs_offset_DW_5equldd ; At DW_5 sp = 144
bb_cs_offset_DW_162equ2 ; At DW_162 sp = 2
bb_cs_offset_DW_163equl ; At DW_163 sp = 0

global _berlekamp
align 16

opt lpa

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

29

References
_berlekamptypefunc
push dé push d7
D_2
push ré6 push r7
Dw_3
adda #>560,sp,r6
[clr d1
tfra r6,sp
]
Dw_5
adda #>-232,sp,r4 move.w #288,d6
move.l rl, (sp-556) doensh3 dé6
adda #>-536,sp,r2 adda #>-259,sp,r3
adda #>-156,sp,r5 adda #>-552,sp,r6
move.l r0, (sp-560) move.l r4d, (sp-164)
loopstart3
143
move.b dl, (r6)+
loopend3
doen2 #<16
dosetup2 L42
[clr d6 clr d2
clr d3 clr d4
moveu.b (xr0),d5
]
move.l dl, (sp-236)
[inc d2 inc d3
clr dl
move.l dé6, (r4)
]
[inc dl
move.w #<-1,d4 move.b d2, (sp-552)
]
move.b d3, (sp-260) adda #>-259,sp,r7
move.b d5, (r3) move.l d4, (sp-160)
move.w #<1,r6 move.l d6, (¥r5)
suba rll,rll adda #>-232,sp,rl2
move.b dl, (r2) adda #>1,r0,r3
[clr d5
adda #>-258,sp,r8 adda #>-152,sp,r9
]
[inc d5
adda #>-228,sp,rl0 move.w #<-1,d7
]
loopstart2
142
[tfr d6,d8 addnc.w #<1,d6,d10

move.l (rl2),r0 move.l (rl2),dll

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

30 Freescale Semiconductor

L41

L30
L8

—

—

1

nop
tstgea r0
bf <L8

addnc.w #<1,d11,d9
asll #<4,d10

sub #1,d9

doensh3 d9
adda r2,rl4d
adda r2,rl3

loopstart3

moveu.b (rl4d)+,d8
loopend3

move.b d8, (rl3)+

move.l (rl2),d9

sub d9,d5,d10
move.l d9, (rl0)

btd L9

move. 1l dio, (r9)

[

—

—

—

—

—

—

tfr d5,d11
asla rl5

adda rl4,rl5 move.l

asll #<4,4d11
moveu.w (rl5),do

adda rl4,rl3

sxt.1l dll
moveu.w (rl3),d8

move.l rl3, (sp-36)
add d8,d9,d10

asl2a rl4

min d10,d14
adda r4,rl4d

sub d4,d6,d10
move.l dl4, (sp-28)

asll #<4,d8

moveu.w (sp-28),rl5

asll #<4,d8

move.l d8,rl4d
move.l dl10,rl3

moveu.b (rld)+,d8

move.b d8, (rl3)+

moveu.b (r7),dll

tsteq dll

move.l # bin 2_exp,rld

tfra r6,rl5

moveu.b (r7),rl3

exp_2_bin_extended, r0

asla rl3

move.w #511,d14

move.l d4,rl4d

move.l (sp-164),rd

tfr d4,ds

move.l (rl4d),rl

References

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

31

References

nop
adda r0,rl5

moveu.b (rl5),rl5

bf L13

—

—

L39

L32
L13

—

—

—

asla rl5
dosetup3 L39

addnc.w #<1,d12,d9
adda rl,rl5

add di12,d11,d13
doen3 d9

move.l dl13,r0
move.l d8,rl

adda rl3,r0
adda r2,rl

falign
loopstart3

moveu.b (rl)+,rl3
move.w #511,d14
moveu.b (r0),d1l5
moveu.w (rl3),d8
add d9,ds,d10
min d10,d14
move.l dl4,rl3
nop
adda r4,rl13
moveu.b (rl3),d8
eor dl5,d8
move.b d8, (x0)+
loopend3

move.l (rl4),dl2
add dl12,d6,d9
tfra rll,x0

sub d4,d9,d12
adda r5,r0

max d8,dl2
sub dl12,d5,d9
move.l dl2, (r10)

move.l d9, (xr9)
cmpgt d10,d7
bt <L9

tstgea rl

move.l (rl4),dl2

move.l # _bin 2_exp,rl

move.l r2,dl2

move.l dl0,rl3

moveu.w (rl5),rl5
move.w rl5, (sp-32)

moveu.w (sp-32),d9

move.l # _bin 2_exp,r4d

asla rl3

adda r4,rl3

move.l #_exp_ 2 bin_ extended,rd

move.l (rl2),d8

move.w #255,d11

move.l #_exp_ 2 bin extended,rd

move.l (xr0),dl0

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

32

Freescale Semiconductor

L9

L40

L34
L20

[

—

—

1

tfr d6,d4
move.l (xr0),d7

nop
moveu.w (rl3),do
sub d9,dll,d1ll
move.l dll,r0

nop
zxta.w r0
adda r4,r0

moveu.b (xr0),r6

tfr d5,d11
move.l (rl1l0),d9

cmpgt.w #<0,d9
move.l (rl1l0),dl0

bf 120
dosetup3 L40

[

asll #<4,d11
doen3 di0

move.l dll,r0

adda r4,rl
adda #<1,r0
falign

loopstart3

moveu.b (xr0)+,rl3

nop
asla rl3

adda rl4,rl3
moveu.w (rl3),d9
asla rl3

adda rl4,rl3

moveu.w (rl3),dl0
add d9,d10,d11
min d11,d15
move.l dl5, (sp-32)

moveu.w (sp-32),rl3

nop
adda rl5,rl3
moveu.b (rl3),do
eor d9,ds
loopend3

move

.1 (sp-36),rl3

moveu.b (r3)+,d8

move.l d6,rl

move.l (sp-560),rd

move.l # _bin 2_exp,rld

adda r2,r0

move.l #_exp_2_bin extended,rl5
move.w #511,d15

moveu.b (rl),rl3

decega rl

References

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

33

References

[inc dé6 inc d5
move.b d8, (r8)+ adda #<4,rl2
]
adda #<4,rll adda #<4,rl0
adda #<4,1r9 adda #<1,r7
loopend2
doen3 #15

dosetup3 L44
adda #>-280,sp,r2

moveu.b (r2),d4 move.l (sp-588),r0
move.l # bin 2_exp,rld move.b d4, (r0)+
moveu.b (r2)+,r3 move.l (sp-556),rl
asla r3
adda rl4,r3
moveu.w (xr3),d5
loopstart3
144
moveu.b (r2),d4 move.w d5, (rl)+
moveu.b (r2)+,r3
move.b d4, (x0)+
asla r3
adda rl4,r3
moveu.w (xr3),d5
loopend3
adda #>-560,sp,r6
tfra r6,sp move.w d5, (rl)+
DW_161
pop r6 pop r7
DW_162
pop dé6 pop d7
DW_163
rts

global Fberlekamp_ end
Fberlekamp_end

TextEnd_berlekamp
endsec

Example 8. Assembly Code for Roots Search

EEEE ST EE RS S E SRS EEE SRS SRR EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

.k *
;* Reed-Solomon error correction algorithm *
.k *
;* SC140 ASSEMBLY *

.k *

i
EEEE ST EE RS S S SRS EEEE SRS SRR RS SRR EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

;¥ *
;* Module Name: chien search.asm *
. x *

i
EEEEE T EEE RS S S S EEEEEEE SRS SR EEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. % *
i

;* Calling convention from C: *

;* n_roots = chien_search(roots, error_loc_poly, roots_poly, error_locations) *

. % *
i

EEEEE S EEEEEE S S SRR SRS SRR EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. % *
i

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

34

Freescale Semiconductor

References
;* INPUT: rO : BYTE roots[N+1] *
;* Table elements -> root candidates *
;* rl : WORD error_loc_poly[2*T] *
;* Error location polynomial in exponential form *
.k *
;* OUTPUT: (sp-28) : WORD roots_poly[2*T] *
P* Exponents of the roots *
i * (sp-32) : BYTE error_locations|[T] *
i* Error locations *
P* do : DWORD n_roots *
P* Number of roots *
* *

EEEEE S EE SRS SRS EEE SRS SRR EEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. x *
;* FUNCTION : Find the error locations by evaluating the error location *
;% polynomial at all field points. The error locations are derived *
;* from the exponents of the field elements which are the roots *
;* of the error location polynomial. *
. x *
;* PERFORMANCE: Cycle count = 4128 *
;* *
;* ALIGNMENT REQUIREMENTS: *
;* *
i * &roots[0] should be aligned 8 *
i * &error_loc_poly[0] should be aligned 8 *
i * &roots_poly[0] should be aligned 8 *
;% &error_locations[0] should be aligned 8 *

* *

RS S S SRS S S SRR LRSS RS SRR LRSS SRR EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

section .text local
TextStart_chien_search

; Define macros

BYTE_SIZE equ 8
N equ 256
T equ 8

; Allocate space for the local variables on stack pointer and calculate offsets
of function arguments

allocation equ 24

roots_off equ allocation+28
err_locs_off equ allocation+32

temp2_off equ allocation-0
temp3_off equ temp2_off-4
tempd_off equ temp3_off-4
temp5_off equ tempd_off-4
temp6_off equ temp5_off-4
temp7_off equ temp6_off-4
temp8_off equ temp7_off-4

global _chien_search

align 16
opt lpa

_chien_search typefunc

; Overhead

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 35

References
push ré6 push r7
push dé push d7
adda #allocation, sp,r6
tfra r6,sp
move.l (sp-roots_off),rl3 move.l (sp-err_locs_off),rld

adda #-temp2_off,sp,r2
adda #-temp3_off,sp,r3
adda #-tempd_off,sp,r4d
adda #-temp5_off,sp,r5
adda #-temp6_off,sp,r6
adda #-temp7_off,sp,r7
adda #-temp8_off,sp,r8

START CHIEN SEARCH
doen2 #T+1 clr dil5
dosetup2 LOOP_ON_T

move.l # exp 2 bin extended,dl4
move.l # exp table for syndrome,r2

move.w #$1ff,d0 move.w #$1ff,dl
[dosetup3 LOOP_ON_N
tfra r0,r8 move.w (rl)+,dll ; 1-st term of error_ loc_poly
->
dll

]
aslw dl1,d10

; For the software pipeline, d2,d3,d4 and d8 are prepared to l-st iteration
; while d5,d6,d7,d13 are prepared to the 0-th iteration)

loopstart2
LOOP_ON_T
[doen3 #N/4 eor dl1,dl0 ; l-st term of error_loc_poly
in
tfr di,di2 ; upper and lower portion of
dio
tfra r8,r0 move.21 (r2)+,d8:d9
]
[add2 d10,d8 add2 di0,d9
]
[zxt.w d8,d5 zxt.w d9,d3
tfr di,d7 asrw d8,d4
]
[min d1,d5 min d3,d7
min d0,d4 asrw d9,d8
]
[add d14,d5,d2 add di14,d7,d3
add di4,d4,d4 min d8,d12

—

add di4,d12,d5
move.l d4,r3 move.l d3,rd

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

36 Freescale Semiconductor

—

move.l d5,r5

—

—

zxt.w d8,d5

moveu.b (r3),d13

moveu.b (r4d),dé

—

min dl1,d5
asll #8,d13

moveu.b (xr6),d7

—

add di4,d5,d2
asrw d9,ds

—

min dl1,d5

—

add di4,d5,d3
tfr dil,d12

move.l (r0),dl5

1

move.21 (r2)+,d8:d9

move.l d2,r6

asrw d8,d4
moveu.b (r5),dll

min d0,d4

zxt.w d9,d5
tfr d11,d9

asll #24,d9

tfr 49,45
asll #16,d6

References

; Main loop. Here the MACs over GF(256) are done."i" is the index of the

iteration,

; ranging from 0 to #N/4-1.Results with indices -3

initialized to zero.

; Main loop

loopstart3
LOOP_ON_N

[add d14,d4,d4
tfr di,d7
move.l d3,rd

1

; table index[2+i]
; copy 511 into d7

; table entries[5+i..8+i]->d8:d9

[add2 410,d8

-> d4

add di4,d12,d5

move.l d4,r3

1

; sum of exponents([5,6+i]

; table index[4+i]
; table index[2+i]

[zxt.w d8,d5
zxt.w d9,d3
move.l d5,r5

1

; sum of exponents
; sum of exponents
; table index[4+i]

-> d8
-> d5 sum of exponents[7,8+i]
-> r3 table index[1+i] -> 16
eor d6,d15
asrw d8,d4
moveu.b (r4d),dé6
[5+41] -> 45
[6+1i]-> d4 sum of exponents [7+i]
-> r5 result[3+i] -> d6

eor d7,d15
min d8,d12
move.21 (r2)+,d8:d9

0

-> results were

result[1l+4(i-1)] is added to accumulator

offset[4+i] -> dl2

eor d5,d15
add2 di0,d9
move.l d2,r6

table index[3+i] -> r4

result[1l+4(i-1)] is added to accumulator

result[3+4(i-1)] is added to accumulator

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

37

References

[min d1,d5
min d3,d7
moveu.b (r3),d13
]

-> d5
-> d7
-> di3

; offset[5+i]
; offset[7+i]
; result[2+i]

[add d14,d5,d2
add di4,d7,d3
move.l dl5, (x0)+

]

; table index[5+i] -> d2
; table index[4+i] -> d3
; result[l+i] -> d7
[asll #24,d5
asll #8,d13
moveu.b (xr6),d7
]
; result[4+i] -> bits [31:24] of d5

; result[2+i] -> bits
; result[l+i] -> 47
loopend3
END_LOOP1
suba #16,r2
-> dll

aslw dl1,d10

loopend2

[15:8] of dl13

move.w

(rl)+,dll

eor dl3,dl5
min d0,d4

result[2+4(i-1)] is added to accumulator

offset[6+i] -> d4
asrw d9,d8

tfr di,dil2
moveu.b (r5),d5

sum of exponents[8+i] -> d8

copy 511 into dl2

result[4+i] -> d5
asll #16,d6
move.l (xr0),dl5

result[3+1i] -> bits[23:16] of dé6

read accumulator of i-th iteration

; i-th term of error_ loc_poly

; Root finding routine. The 256 candidate roots are scanned for zeroes. The
exponent ; of the root is written into rl3 and the error location indices into

rld.

dosetup3 FIND ZEROES

tfra r8,r0

doen3 #N/2-2
clr dO
moveu.b

—

(r0)+,d2

—

tsteqg d2

moveu.b (xr0)+,d2

[ift

inc dO
move.w dl, (rl3)+

—

tsteqg d2
inc dil

moveu.b (xr0)+,d4

clr dl

move.b dl, (rl4d)+ ;

; rO -> first table element

; roots counter d0 cleared
; root exponent dl cleared

special case: zero element

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

38

Freescale Semiconductor

References
move.l #N-2,d3
[ift
inc 4O
move.b d3, (rld)+ move.w dl, (rl3)+ ; error location index -> d3

1

FIND_ZEROES
loopstart3

start_loop

[tsteqg d4
inc dil sub #1,d3
moveu.b (xr0)+,d2

[ift

inc dO

move.b d3, (rld)+ move.w dl, (rl3)+
]
[tsteqg d2

inc dil sub #1,d3

moveu.b (xr0)+,d4

[ift
inc dO
move.b d3, (rld)+ move.w dl, (rl3)+

]
end_loop
loopend3

adda #-allocation, sp,r6

tfra r6,sp
pop dé pop d7
pop r6 pop r7

END_CHIEN_SEARCH
rts

global Fchien_ search_end
Fchien search_end

TextEnd_chien_search
endsec
Example 9. Assembly Code for Forney Algorithm

RS SRS SRS SRR LRSS RS SRR EEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
1

*

.ok *
;* Reed-Solomon error correction algorithm *
.k *
;* SC140 ASSEMBLY *
.k *

i

EEEE S SRS S SR EEEE SRS SRR EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

;¥ *
;* Module Name: forney.asm *
. x *

i
EEEEE S SRS S S SRS EEE SRS SRR EEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. % *
i

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor 39

References

;* Calling convention from C:
;* forney (syndromes, error_loc_poly, n_roots,error_ locations, *
roots_poly, received_block)

. %
i

. %
i

RS S SRS SRR LRSS RS EEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

. %
i

;* INPUT:

;* OUTPUT:

r0

rl

(sp-28)

(sp-32)

(sp-36)

(sp-40)

(sp-40)

BYTE syndromes[2*T]
2T syndromes
WORD error_loc_poly[2*T]

*

*

*

*

Error location polynomial in exponential form *

DWORD n_roots

Number of roots

BYTE error_locations[T]
WORD roots_poly[2*T]
Error locations
Exponents of the roots
BYTE received_block[N]
Received block

BYTE received_block[N]
Corrected block

RS ST EE RS S E SRS EEE SRS SRR EEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

;* FUNCTION

Deriving the error location polynomial by Berlekamp’s iterative *

algorithm. This is a compiled code which has been slightly *
modified by applying software pipelining applied and efficient *
register allocation.
polynomial at all field points. The error locations are derived *
from the exponents of the field elements which are the roots *

of the error location polynomial.

;* PERFORMANCE: Cycle count:

;* #errors
;* #errors
;* #errors
;* #errors
;* #errors
;* #errors
;* #errors
;* #errors
;* #errors

;* ALIGNMENT

Il

W J o Ul WN PO
|
\2

&syndromes [0] should be aligned 8
&error_loc_poly[0] should be aligned 8
&error_locations should be aligned 8
&roots_poly[0] should be aligned 8
&received _block[0] should be aligned 8

0 c
259
295
331
368
476
512
548
587

vcles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles

REQUIREMENTS:

*

EEEEE S SRS S S SRS EEE SRS SRR EEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE
i

; Define macros

N equ 255

T equ 8

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

40

Freescale Semiconductor

References
allocation equ 104
n_off equ allocation+28
err_locs_off equ allocation+32
rp_off equ allocation+36
r_off equ allocation+40
z_off equ allocation-0
z_exp_off equ z_off-2*T
temp_off equ z_exp_off-2*T
t_nomden_off equ temp off-2*(2*T)
section .data local
global _forney
align 16
opt lpa
_forneytypefunc
push dé push d7
push ré6 push r7
adda #allocation, sp,r6
tfra r6,sp
BEGIN_FORNEY
; fill in the temp array (r3) from the s array (r0)
adda #-temp_off,sp,r3 ; r3->temp[0]
doensh3 #(T-1) tfra r3,r9
move.l # bin 2_exp,rld
move.l #2*N+1,d0
[clr d1
tfra rl4,rl2 tfra rl4d,rl13
]
loopstart3
move.w dO, (xr3)+ ; temp[0]...[T-2] =
2*N+1
loopend3

moveu.b (xr0)+,r5 doen3 #T/2 ;
register
addlla r5,rl12 dosetup3 LOOP_ON_S
move.w dl, (xr3)+ moveu.b (r0)+,r6 ;
moveu.w (rl2),d5 ;

register

r5 some temp

temp[T-1] = 0
r6 some temp

loopstart3

LOOP_ON_S

i

Calculate m =

tfra rl4d,rl2

moveu.b (xr0)+,r5
move.w d5, (r3)+
moveu.b (xr0)+,r6
move.w dé6, (r3)+

loopend3

move.w d5, (r3)+
move.w dé, (r3)

(short int)

tfra r14d,rl13
addlla r6,rl2
addlla r5,rl3
moveu.w (rl2),d6
moveu.w (rl3),d5

suba #(T+2),r0

(((n-1) >> 2) + 1);

i

r0 -> s[0]

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

41

References

; m in d15 now,

move.l (sp-n_off),dl5

sub #1,d15
asrr #2,d15
inc di5

adda #-4,sp,r7
move.w #0, (r7)

adda #2*T,r9

dosetup2 OUTER_LOOP

tfr d15,d0
doen2 do0

dosetup3 INNER_LOOP
adda #-z_off,sp,r2

elp in (sp-elp_off), temp in r3

move.l # exp 2 bin extended, r3

tfra r9,rl0

moveu.w (rl)+,d7

clr d3

tfra rl,rl5

move.w #(2*N+1),d0

tfr 40o,d1
loopstart?2

OUTER_LOOP
[clr d8

clr 410
doen3 #(T+1)

1
temp [T+0...3]

[add d7,d12,d4
add d7,d14,de6
suba #2,r10

]

loopstart3
INNER_LOOP
;1

[eor d3,d10
min dl1,d5

moveu.b (xr7),d3

1

; sum2”=sum -> dl10

; powl=min (powl, 2*N+1)
; load bin_2_exp[pow3]

;2

[eor d3,d11
tfr di5,d4
move.l d4,rd

; sum3”*=sum3 -> dll
; copy dl5 into d4

tfr 40,d2

clr d9

clr dll

; r9 -> temp[T]

; m -> d0

; r2->z[0]

; rl0 -> temp[T]
; rl5 -> elpl[0]

; r8 —>elpll]

; sum[0..3]=0

move.4w (rl0),d12:d13:d14:d15 ; load temp[T+0..3]

add d7,d13,d5

adda #-4,sp,r7

min d0,d4
add d7,d15,d15
moveu.w (rl)+,d7

-> d5
-> d3

min d2,d6

move.l d5,r5

; pow0 = min(powQ,2*N+1) -> rd

; denote:t0...t3 =

; pow0, 1=x_pow+t0, 1
; pow2=X_pow+t2
; rl0-—>temp[T-1]

pow0 = min (pow0,2*N+1) -> d4
pow3=x_pow+t3 -> dl5
load x_pow=elp[j+1] -> d7

pow2=min (pow2,2*N+1) -> d6

powl=min (powl, 2*N+1) -> r5

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

42

Freescale Semiconductor

;3
[min d0,d4 tfr di4,d1s
tfr di13,d14 tfr d12,d13
move.l dé6,r6 moveu.w (rl0)-,dl2

1

; pow3=min (pow3,2*N+1) -> d4 t3 = t2
; t2 = tl tl = t0
; load tO=temp[T-(j+1)] -> r6

;4

[adda r3,r4d move.l d4,r7
]

[moveu.b (r4),d3 adda r3,r5
]

; load b[powO] -> d3
;6

[eor d3,d8
moveu.b (xr5),d3 adda r3,r6
]

; sum0”=sum0 -> d8
; load b[powO] -> d3

;7
[eor d3,d9 add d7,d12,d4
add d7,d13,d5 add d7,d14,d6
moveu.b (xr6),d3 adda r3,r7
]
; suml”=suml -> d9 powO=x_pow+t0 -> d4
; powl=x_pow+tl -> d5 pow2=x_pow+t2 -> d6

; load b[pow2] -> d3

loopend3
[eor d3,d10
moveu.b (xr7),d3 tfra rl5,rl
>elp[0]
]
[eor d3,d11 clr d3

adda #(4*2),r9,r9 moveu.w (rl)+,d7
]

[move.4w d8:d9:d10:d11, (r2)+
tfra r9,rl0
]

loopend2
LLABEL

adda #-z_off,sp,r2

References

; sum2”=sum2 ->d10

load blpow3]->d3, rl-

; sum3”"=sum3->dll

9->temp[T+i+4],x pow=elp[0]

; store z[i+0..3]=sum0..3

; r2 -> z[0]

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

43

References

[clr a2

move.

clr d3

1 (sp—n_off),r5 move.l (sp-n_off),d5

asla r5 move.l #T,d4
sub d5,d4,d5
adda r2,r5 doensh3 d5
adda #-z_exp_off,sp,r9

loopstart3

LLLABEL

move.w d2, (r5)+
loopend3

; £ill in the z_exp array (r9) from the

; Cycle count ~ 4 +

tfra

moveu.w (r2)+,r3
addlla r3,rl3

tfra r14d,rl13
doen3 #T/2

rld,rl2

moveu.w (r2)+,rd
moveu.w (rl3),d3

loopstart3

LOOP_ON_Z

tfra

moveu.w (r2)+,r3
move.w d3, (r9)+
moveu.w (r2)+,rd
move.w d4, (r9)+

tfra r14d,rl13
addlla r4,rl2
addlla r3,rl13

rld,rl2

loopend3

move.w d4, (r9)+
move.w d3, (r9)

; Forney b

adda
move

move

adda
tfra

move.

adda
tfra
adda

move
move

#-4,sp,r6
.w #0, (r6)

.1 # exp table for syndrome,r8

#-z_exp_off,sp,r9
rl5,rl4

1 (sp-rp_off),rll
#-t_nomden_off, sp,r3
r3,rl3

#2,rl4

.w #(N+1),n0

w #2,nl

dosetup3 LOOP_ON_Z

moveu.w (rl2),d4
moveu.w (rl3),d3

; 5 -> z[n]
; 9 > z_expl0]

z array (r2).
(T/2)*4 = 20 (worst case)

; needed because of using
; software pipeline in kernel

; r8->exp table for syndrome[0]

; ¥9->z_exp[0]

; rld->elp(0]

; rl1->rp[0]

; r3->t_nomden[0]

; r3,rl3 -> t_nom den[0]
; rld->elpl[l]

dosetup2 LOOP1
dosetup3 LOOP2

move.l (sp-n_off),d0

doen2 do0

moveu.l #_exp_2_bin_extended,dl5

tfra r8,r0

moveu.w (rll)+,r7

; rO->syndrome[0] [0]
; r7=rp[0]

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

LOOP1

—

—

tfra r9,rl0
tfra rl5,r2
addlla r7,xr0

moveu.w
move. 2w

(r0)+n0,ds
(rl0)+,d10:d11

move.w #(2*N+1),d0

tfr do,d1l tfr d40,d2
loopstart?2

clr d3 clr di2
clr di3

nom=0, den=0

moveu.w (r0)+n0,d9 doen3 #4

add ds8,d10,d4
add #1,d12
move.2w (r1l0)+,d10:d11l tfra rl4,r2

add d9,d11,d5

[min d0,d4 min dl,d5
moveu.w (r2)+nl,d7 moveu.w
rp[i+l]
]
falign
loopstart3
LOOP2
;1
[add d15,d4,d4 eor d3,dl12
add ds,d7,de6
moveu.b (r6),d3 moveu.w
x0_pow=table[j+2] [rp[i]]
]
;2
[add d15,d5,d5 eor d3,dl13
min d2,d6
move.l d4,rd moveu.w

x1_pow=table[j+3] [rp[i]]

]
;3

[

add ds,d10,d4
move.l d5,r5

add dil5,d6,d6
moveu.w

(rll)+,xr7

(r0)+n0,ds

(r0)+n0,d9

(r2)+nl,d7

References

; rl0 ->z_exp[0]
; r2->elpl0]
; ¥O->syndrome[0] [rp[0]]

load syndrom[1] [rp[0]]
load y0_pow=z_exp[0]

i

i

; v1_pow=z_exp[l]

load table[l] [rplil]

pow_n0=x0_pow+y0_pow
pow_nl=x1_pow+yl_pow,nom=1
load y0_pow=z_exp[2]
vl pow=z_exp[3],r2->elp[l]

pow_n0=min (pow_n0, 2*N+1)
pow_nl=min (pow_nl, 2*N+1)
load y_pow=elp[l], load

nom”=nom
pow_d=x0_pow+y_pow
load bin_2_exp[pow_d]
load

den=den”

pow_d=min (pow_d, 2*N+1)

load

pow_n0=x0_pow+y0_pow
load y_pow=elp[j+3]

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

45

References

[min d0,d4 add d9,d11,d5 ; pow_nO=min (pow_n0, 2*N+1)
move.l dé6,r6 moveu.b (r4d),d3 ; pow_nl=x1_pow+yl_pow
; load bin_2_expl[pow_n0]

;5
[eor d3,d12 min dl,d5 ; nom”™=nom,pow_nl=min
; (pow_nl, 2*N+1)
moveu.b (r5),d3 move.2w (rl0)+,dl10:d1ll ; load bin_ 2_expl[pow nl]
; load y0_pow=z_exp[j+4]
1 i vyl _pow=z_exp[j+5]
loopend3
LABEL
[eor d3,d12 ; nom”™=nom
moveu.b (r6),d3 tfra r8,r0 ; load bin_2_expl[pow_d]
; rO->table[0][0]
]
[eor d3,d13 ; den=den”
addlla r7,r0 tfra r9,rl0 ; rO->table[0] [rpl[i]]
; r10->z_exp[0]
]
[move.2w d12:d13, (r3)+ moveu.w (r0)+n0,ds8 ; store t_nomden[2*i+0]=nom
; t_nomden[2*i+1]=den
; load table[0] [rp[il]]
]
move.2w (rl1l0)+,d10:d11 adda #-4,sp,r6 ; load y0_pow=z_exp[0]
i vl pow=z_exp[l]
loopend2
; Forney_ c
move.l #255,d13

1
move.l #511,d0

move.l # bin 2_exp,dl2

move.l # exp 2 _bin extended,dl4
move.l (sp-r_off),rl5

; r1l3->t_nomden[0]
move.l (sp-err_locs_off),rl
move.l (sp-n_off),dl0
zxt.b d10,d10

; Overhead before loop

FORNEY_C

moveu.w (rl3)+,dl tfra rl5,rl4 ; dl -> nom[O0]
moveu.b (rl)+,r8 moveu.w (rl3)+,d2 ; d2 -> denom[0]
asll #1,d1 asll #1,d2

[add d12,d1,d1 add di12,d2,d2
adda r8,rl4d

]
move.l dl,r3 move.l d2,rd ; ptr to table
moveu.w (rl3)+,dl moveu.b (rl4d),dl5 ; dl -> t_nomden[1]

; d15 -> received[err_loc[0]]
moveu.w (rl3)+,d2

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

46 Freescale Semiconductor

[asll #1,d1
moveu.w (xr3),d5

—

sub d6,d13,dé
add dilz,d2,d2

—

add d5,de6,d4
move.l dl,r3

min d0,d4

[add d14,d4,d4
table
moveu.w (r3),d5
iteration ready

1

[sub d6,d13,d6
move.l d4,r6
iteration ready

]
doen3 di0

moveu.b (r6),d4
ready

loopstart3
LOOP_ON_ERRORS

[add d5,d6,d4

moveu.w (rl3)+,dl

—

min d0,d4
move.b dl5, (rl4)

—

asll #1,d2
tfra rl5,rl4

—

add di2,d1,d1
add di4,d4,d4
adda r8,rl4d

move.l dl,r3
move.l d4,r6
moveu.w (xr3),d5

—

sub d6,d13,d6
moveu.b (r6),d4

loopend3

END_FORNEY

asll #1,d2
moveu.w (r4d),dé

add di2,d1,dl

move.l d2,rd

dosetup3 LOOP_ON_ERRORS

moveu.w (r4),dé

eor d4,dl5
moveu.b (rl)+,r8

asll #1,d1
moveu.w (rl3)+,d2

add dil2,d2,d2

move.l d2,rd

moveu.w (r4),dé6

moveu.b (rl4d),dl5

i

i

i

i

References

d5 -> pwr of nom[0]
dé -> pwr of denom[0]

dé -> 255-pwr of denom[0]

pwr of error[0]

i

i

i

i

; ptr to location in

dé for 1l-st

d5 for 1l-st

d4 for O-iteration

Reed Solomon Encoder/Decoder on the StarCore™ SC140/SC1400 Cores, With Extended Examples, Rev. 1

Freescale Semiconductor

47

adda #-allocation, sp,r6

tfra r6,sp

pop r6 pop r7
pop dé pop d7
rts

global Fforney end
Fforney end

TextEnd_forney
endsec

NOTES :

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7

81829 Miunchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Document Order No.: AN2407
Rev. 1
12/2004

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc.2003, 2004.

e

Z “freescale"

semiconductor

	1 Basics of Forward Error Correction (FEC)
	2 Theory
	2.1 Galois Fields
	2.2 Reed-Solomon Codes
	2.3 Error-Correcting Performance of Reed-Solomon Codes

	3 SC140 Core Overview
	4 Implementation on the SC140 Core
	4.1 Polynomial Evaluation Over GF(256)
	4.2 MAC Instructions Over Galois Fields
	4.3 Look-up Tables
	4.4 Lowest Cycle Count Limit for Polynomial Evaluation
	4.5 Cycle Count of the Reed-Solomon Routines

	5 Results
	6 Summary
	7 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

