16,384-Bit (4,096x4) Bipolar PROM ### DISTINCTIVE CHARACTERISTICS - Ultra-fast access time "A" version (35 ns Max.) - Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%) - AC performance is factory tested utilizing programmed test words and columns - Voltage and temperature compensated providing extremely flat AC performance over military range - Member of generic PROM series utilizing standard programming algorithm ## **GENERAL DESCRIPTION** The Am27S41 (4,096 words by 4 bits) is a Schottky TTL Programmable Read-Only Memory (PROM). This device has three-state outputs compatible with lowpower Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls, mapping functions, code conversion, or logic replacement. Easy word-depth expansion is facilitated by active LOW $(\overline{G_1} \& \overline{G_2})$ output enables. As an APL product, this device is also offered in a power-switched version, the Am27PS41. #### **BLOCK DIAGRAM** *E nomenciature applies only to Am27PS power-switched version. www.datash #### PRODUCT SELECTOR GUIDE | Part Number | Am27S41A | | Am2 | Am27PS41 | | | |------------------------|----------|-------|-------|----------|-------|--| | Address Access
Time | 35 ns | 50 ns | 50 ns | 65 ns | 65 ns | | | Operating Range | С | М | С | М | М | | Publication # Rev. Amendment 02122 D /0 Issue Date: January 1969 ### CONNECTION DIAGRAMS Top View Note: Pin 1 is marked for orientation. ### LOGIC SYMBOL *E nomenclature applies only to Am27PS power-switched version. # ORDERING INFORMATION #### **Standard Products** AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number - b. Speed Option (if applicable) - c. Package Type - d. Temperature Range - e. Optional Processing | Valid Combinations | | | | | | |--------------------|----------------------|--|--|--|--| | AM27S41 | PC, PCB,
DC, DCB, | | | | | | AM27S41A | JC, JCB | | | | | ### **Valid Combinations** Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products. # MILITARY ORDERING INFORMATION #### **APL Products** AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number - b. Speed Option (if applicable) - c. Device Class - d. Package Type - e. Lead Finish | Valid Combinations | | | | | | | | |--------------------|------|--|--|--|--|--|--| | AM27S41 | | | | | | | | | AM27S41A | /BRA | | | | | | | | AM27PS41 | 1 | | | | | | | ### Valid Combinations Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations. #### **Group A Tests** Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11. #### MILITARY BURN-IN Military burn-in is in accordance with the current revision of MIL-STD-883, Test Method 1015, Conditions A through E. Test conditions are selected at AMD's option. ## PIN DESCRIPTION A₀-A₁₁ Address Inputs The 12-bit field presented at the address inputs selects one of 4,096 memory locations to be read from. Q₀ - Q₃ Data Output Port The outputs whose state represents the data read from the selected memory locations. G₁, G₂ Output Enable Provides direct control of the Q-output, three-state buffers. Outputs disabled forces all outputs to a floating or highimpedance state. On power-switched version, the disabled state reduces the ICC to ICCD. Enable = $$\overline{G_1} \cdot \overline{G_2}$$ Disable = $\overline{G_1} \cdot \overline{G_2}$ V_{CC} Device Power Supply Pin The most positive of the logic power supply pins. Device Power Supply Pin The most negative of the logic power supply pins. # FUNCTIONAL DESCRIPTION # **Power Switching** The Am27PS41 is a power-switched device, When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, ICC is reduced to half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance: - 1. When the Am27PS41 is selected by a low level on $\overline{E_1}$, a current surge is placed on the V_{CC} supply due to the powerup feature in order to minimize the effects of this current transient, it is recommended that a 0.1 μf ceramic capacitor be connected from pin 20 to pin 10 at each device. (See Figure 1.) - 2. Address access time (TAVQ1) can be optimized if a chip enable set-up time (TEVAV) of greater than 25 ns is ovserved. Negative set-up times on chip enable (TEVAV < 0) should be avoided. (For typical and worse case characteristics, see Figures 2A and 2B.) ## ABSOLUTE MAXIMUM RATINGS | Storage Temperature65 to +150°C
Ambient Temperature with | |---| | Power Applied55 to +125°C | | Supply Voltage0.5 V to +7.0 V | | DC Voltage Applied to Outputs | | (Except During Programming)0.5 V to +VCC Max. | | DC Voltage Applied to Outputs | | During Programming21 V | | Output Current into Outputs During | | Programming (Max. Duration of 1 sec) 250 mA | | DC Input Voltage0.5 V to + 5.5 V | | DC Input Current30 mA to +5 mA | | | ### **OPERATING RANGES** | Commercial (C) Devices Ambient Temperature (T _A) | |---| | Military (M) Devices Case Temperature (T _C)55 to +125°C Supply Voltage (V _{CC})+4.5 V to +5.5 V | | Operating ranges define those limits between which the functionality of the device is guaranteed. | | Military Products 100% tested at T _C = +25°C, +125°C, | # DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted) and -55°C. | Parameter
Symbol | Parameter
Description | Test Conditions | | | Тур. | Max. | Unit | |---------------------|---|---|------------|------------------|------|------------|-----------------| | VOH | Output HIGH Voltage V _{CC} = Min., I _{OH} = -2.0 mA
V _{IN} = V _{IH} or V _{IL} | | | | - 7 | - Huazi | V | | VOL | Output LOW Voltage | Vcc = Min., I _{OL} = 16 mA COM'L | | | | 0.45 | | | | | VIN = VIH Or VIL | MIL | | | 0.50 | v | | VIH | Input HIGH Level | Guaranteed input logical HIGH voltaginputs (Note 3) | e for all | 2.0 | | | v | | VIL | Input LOW Level | Guaranteed input logical LOW voltage inputs (Note 3) | for all | | | 0.8 | ٧ | | l _{IL} | Input LOW Current | V _{CC} = Max., V _{IN} = 0.45 V | | | | -0.250 | | | Ін | Input HIGH Current | VCC = Max., VIN = VCC | | - | | 40 | mA
µA | | Isc | Output Short-Circuit Current | V _{CC} = Max., V _{OUT} = 0.0 V | COM'L | -20 | | -90
-90 | mA | | | | (Note 1) | MIL | -15 | | | | | lcc | Power Supply Current | Vcc = Max. All inputs = 0.0 V | COM'L | | | 165 | mA | | | + | | MIL | | | 170 | | | ICCD* | Am27PS Version Power Down
Supply Current | V _{CC} = Max
V _{E1} = 2.4 V, All other inputs = 0.0 V | | | | 85 | mA | | V _i | Input Clamp Voltage | V _{CC} = Min., I _{IN} = -18 mA | | | | -1.2 | | | ICEX | Output Leakage Current | V _{CC} = Max. | Vo = Vcc | | | 40 | ν
μ Α | | | | VG1 = 2.4 V | Vo = 0.4 V | | | -40 | | | CiN | Input Capacitance | V _{IN} = 2.0 V @ f = 1 MHz (Note 2)
V _{CC} = 5 V, T _A = 25°C
V _{OUT} = 2.0 V @ f = 1 MHz (Note 2)
V _{CC} = 5 V, T _A = 25°C | | | 5.0 | -40 | | | COUT | Output Capacitance | | | | 8.0 | | ₽F | Notes: 1. Not more than one output should be shorted at a time. Duration of the short circuit test should not be more than one second. 2. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where # SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted*) | Parameter
No. Symbol | Ī | | | 27S Version | | | | 27PS Version
MIL | | | |-------------------------|--|-------------|---------|-------------|------|------|------|---------------------|------|------| | | Parameter | | COM'L | | MIL | | | | | | | | Symbol | Description | Version | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | 1 TAVQV | Address Valid to Output Valid Access Time | A | | 35 | | 50 | | | | | | | | STD | | 50 | | 65 | | 65 | ns | | | 2 TGVQZ | Delay from Output Enable Valid to Output Hi-Z | Α | | 25 | | 30 | | | | | | | | STD | | 25 | | 30 | | 30 | ns | | | 3 TGVQV | Delay from Output Enable Valid to Output Valid | A | | 25 | | 30 | | 50 | | | | | | STD | | 25 | | 30 | | 85 | ns | | | 4 TAVQV1 | Power Switched Address Valid to Output Valid
Access Time (Am27PS Versions only) | A | | | | - 50 | | - 65 | | | | | | STD | | | | | | 85 | ns | | See also Switching Test Circuit. Notes: 1. Tests are performed with input transition time of 5 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V. *Subgroups 7 and 8 apply to functional tests. Sylicand VIH are injure conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment. # SWITCHING TEST CIRCUIT Notes: 1. TAVQV is tested with switch S₁ closed and C_L = 50 pF. TEVAV is defined as chip enable setup time. 2. For the three-state output, TGVQV is tested with C_L = 50 pF to the 1.5 V level; S₁ is open for high-impedance to HIGH tests and closed for high-impedance to LOW tests. TGVQZ is tested with C_L = 5 pF. HIGH to high-impedance tests are made with S₁ open to an output voltage of steady state HIGH -0.5 V; LOW to high-impedance tests are made with S₁ closed to the steady state LOW + 0.5 V level. # SWITCHING WAVEFORMS # KEY TO SWITCHING WAVEFORMS