

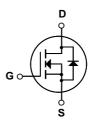
April 2000

QFET™

FQPF7N30

300V N-Channel MOSFET

General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply.

Features

- 4.9A, 300V, $R_{DS(on)} = 0.7\Omega @V_{GS} = 10 V$
- Low gate charge (typical 13 nC)
- Low Crss (typical 12 pF)
- Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter		FQPF7N30	Units	
V _{DSS}	Drain-Source Voltage		300	V	
I _D	Drain Current - Continuous (T _C = 25°C	;)	4.9	A	
	- Continuous (T _C = 100°	C)	3.1	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	19.6	А	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	380	mJ	
I _{AR}	Avalanche Current	(Note 1)	4.9	Α	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	3.9	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns	
P _D	Power Dissipation (T _C = 25°C)		39	W	
	- Derate above 25°C		0.31	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		3.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	300			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.3		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 300 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 240 V, T _C = 125°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Chr	prostoriation					
V _{GS(th)}	aracteristics Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 2.45 A		0.53	0.7	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 2.45 A (Note 4)		3.7		S
C	Output Canacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		470	610	pF
Coss	Output Capacitance					•
C _{oss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		100	130 16	pF pF pF
C _{rss}	' '			100	130	pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		100	130	pF
Switch	Reverse Transfer Capacitance	f = 1.0 MHz V _{DD} = 150 V, I _D = 7.0 A,		100	130 16	pF pF
C_{rss} Switch $t_{d(on)}$ t_r	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time	f = 1.0 MHz		100 12	130 16	pF pF
C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz V _{DD} = 150 V, I _D = 7.0 A,		100 12 13 75	130 16 35 160	pF pF
$\frac{\mathbf{C}_{\text{rss}}}{\mathbf{Switch}}$ $\frac{\mathbf{t}_{\text{d(on)}}}{\mathbf{t}_{\text{r}}}$ $\frac{\mathbf{t}_{\text{d(off)}}}{\mathbf{t}_{\text{f}}}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	f = 1.0 MHz $V_{DD} = 150 \text{ V}, I_D = 7.0 \text{ A},$ $R_G = 25 \Omega$		100 12 13 75 25	130 16 35 160 60	pF pF ns ns
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	f = 1.0 MHz V_{DD} = 150 V, I_{D} = 7.0 A, R_{G} = 25 Ω (Note 4, 5)	 	100 12 13 75 25 35	130 16 35 160 60 80	pF pF ns ns ns ns
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	f = 1.0 MHz V_{DD} = 150 V, I_{D} = 7.0 A, R_{G} = 25 Ω (Note 4, 5) V_{DS} = 240 V, I_{D} = 7.0 A,	 	100 12 13 75 25 35 13	130 16 35 160 60 80 17	pF pF ns ns ns ns
Switch td(on) tr td(off) tf Qg Qgs Qgd	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 150 \text{ V}, I_{D} = 7.0 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 240 \text{ V}, I_{D} = 7.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	100 12 13 75 25 35 13 3.4	130 16 35 160 60 80 17	pF pF ns ns ns ns
C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 150 \text{ V}, I_D = 7.0 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 240 \text{ V}, I_D = 7.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) and Maximum Ratings	 	100 12 13 75 25 35 13 3.4	130 16 35 160 60 80 17	pF pF ns ns ns ns
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \\ \\ \textbf{Drain-S} \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 150 \text{ V}, \text{ I}_{D} = 7.0 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 240 \text{ V}, \text{ I}_{D} = 7.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) Note 4, 5 Note 4, 5 Note 4, 5 Note 5 Note 6, 7 Note 7, 7 Note 6, 7 Note 7, 7 Note 6, 7 Note 7, 7 Note 6, 7 Note 6, 7 Note 7, 7 Note 6, 7 Note 7, 7 Note 7, 7 Note 9, 7	 	100 12 13 75 25 35 13 3.4 6.4	130 16 35 160 60 80 17 	pF pF ns ns ns ns nc nC
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \\ \\ \textbf{Drain-S} \\ \textbf{I}_{S} \\ \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics as Maximum Continuous Drain-Source Diode	$f = 1.0 \text{ MHz}$ $V_{DD} = 150 \text{ V}, \text{ I}_{D} = 7.0 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 240 \text{ V}, \text{ I}_{D} = 7.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) Note 4, 5 Note 4, 5 Note 4, 5 Note 5 Note 6, 7 Note 7, 7 Note 6, 7 Note 7, 7 Note 6, 7 Note 7, 7 Note 6, 7 Note 6, 7 Note 7, 7 Note 6, 7 Note 7, 7 Note 7, 7 Note 9, 7	 	100 12 13 75 25 35 13 3.4 6.4	130 16 35 160 60 80 17 	pF pF ns ns ns nc nC
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(\text{on})} \\ \textbf{t}_{r} \\ \textbf{t}_{d(\text{off})} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \\ \\ \textbf{Drain-S} \\ \textbf{I}_{SM} \\ \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics au Maximum Continuous Drain-Source Diode F	$f = 1.0 \text{ MHz}$ $V_{DD} = 150 \text{ V}, \text{ I}_{D} = 7.0 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 240 \text{ V}, \text{ I}_{D} = 7.0 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) Note 4, 5 Note 4, 5 Note 4, 5 Note 4, 5 Note 5 Note 6 Note 6, 5 Note 6 Note 7 Note 6, 5 Note 7 Note 7 Note 6 Note 7 Note 8 Note 9 $Note$	 	100 12 13 75 25 35 13 3.4 6.4	130 16 35 160 60 80 17 	pF pF ns ns ns ns nC nC

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 26.49mH, I $_{AS}$ = 4.9A, V $_{DD}$ = 50V, R $_{G}$ = 25 Ω , Starting T $_{J}$ = 25°C 3. I $_{SD}$ ≤ 7.0A, di/dt ≤ 200A/ $_{HS}$, V $_{DD}$ ≤ BV $_{DSS}$, Starting T $_{J}$ = 25°C 4. Pulse Test : Pulse width ≤ 300 $_{HS}$, Duty cycle ≤ 2% 5. Essentially independent of operating temperature

Typical Characteristics

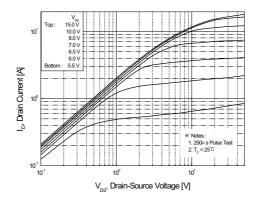


Figure 1. On-Region Characteristics

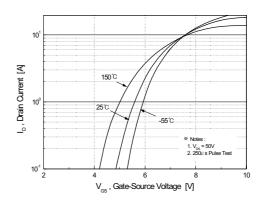


Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

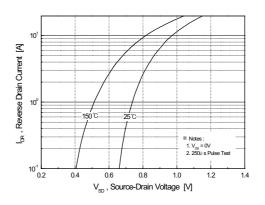


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

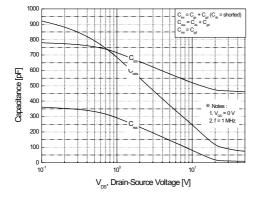


Figure 5. Capacitance Characteristics

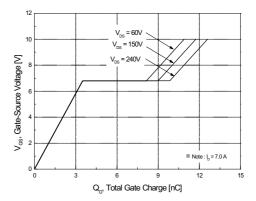


Figure 6. Gate Charge Characteristics

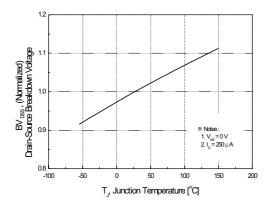
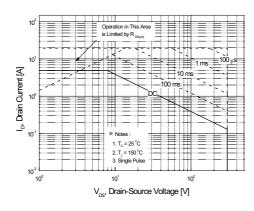



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

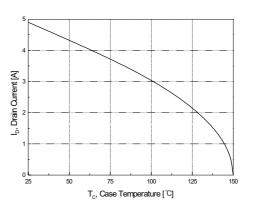
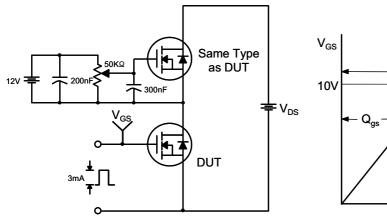


Figure 9. Maximum Safe Operating Area


Figure 10. Maximum Drain Current vs. Case Temperature

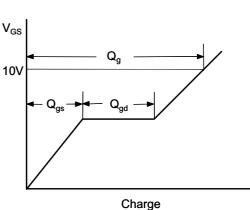
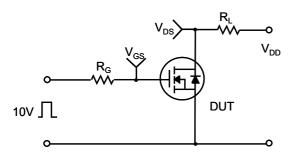
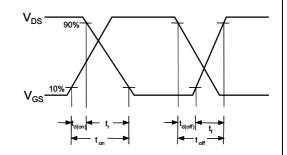
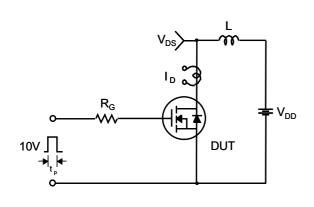
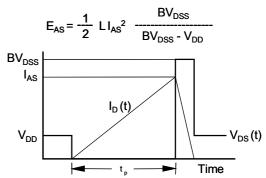


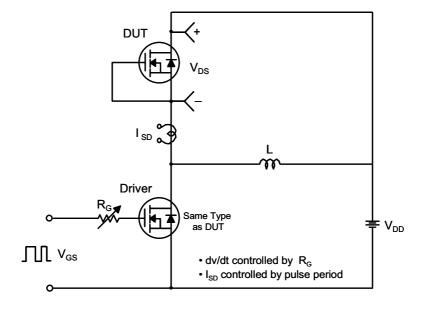
Figure 11. Transient Thermal Response Curve

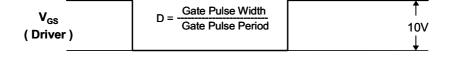

©2000 Fairchild Semiconductor International Rev. A, April 2000

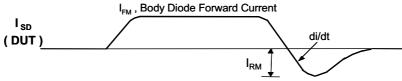


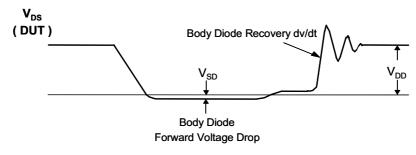


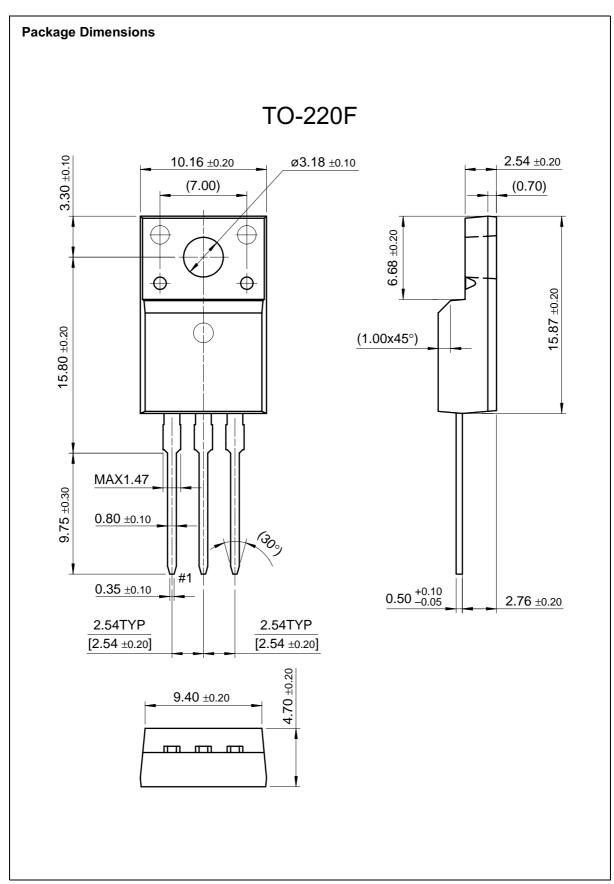

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms




Peak Diode Recovery dv/dt Test Circuit & Waveforms



Body Diode Reverse Current

©2000 Fairchild Semiconductor International

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

FAST[®] Quiet Series™ FASTr™ SuperSOT™-3 GTO™ SuperSOT™-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. A, January 2000