

OPTIREG™ linear TLE4296G

Low drop voltage regulator

Features

- Two output voltage versions: 3.3 V, 5.0 V
- Output voltage tolerance $\leq \pm 4\%$
- Very low drop voltage
- Output current: 30 mA
- Inhibit function
- Low quiescent current consumption
- Input voltage up to 45 V
- Wide temperature range: $T_i = -40^{\circ}$ C to +150°C
- Output protected against short circuit
- Overtemperature protection
- Reverse polarity proof
- Very small and thermally enhanced package
- Green Product (RoHS compliant)

Potential applications

General automotive applications

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Description

The OPTIREG[™] linear TLE4296G is a monolithic integrated low drop voltage regulator in very small SMD package PG-SCT595-5. It is designed to supply various loads (e.g. microcontrollers, sensors, or as stand-by supply, etc.) under severe conditions. Therefore the device is equipped with additional protection functions against overload, short circuit and reverse polarity. In case of an overtemperature condition the regulator is automatically turned off by the integrated thermal protection circuit.

Input voltages up to 40 V are regulated to $V_{Q,nom}$ = 3.3 V (V33 version) or 5.0 V (V50 version). The output is able to drive a load of 30 mA while it regulates the output voltage within a 4% accuracy. To save energy the device can be switched to stand-by mode via an inhibit input which causes the current consumption to drop below 5 μ A.

Туре	Package	Marking
TLE4296GV33	PG-SCT595-5	C2
TLE4296GV50	PG-SCT595-5	C1

Table of contents

	Features	1
	Potential applications	1
	Product validation	1
	Description	1
	Table of contents	3
1	Block diagram	4
2 2.1 2.2	Pin configuration Pin assignment . Pin definitions and functions	5
3 3.1 3.2 3.3	General product characteristics Absolute maximum ratings Functional range Thermal resistance	6 7
4 4.1 4.2	Electrical characteristics	8
5	Application information	10
6	Package information	11
7	Revision history	12

Block diagram

1 Block diagram

Pin configuration

2 Pin configuration

2.1 Pin assignment

Figure 2 Pin configuration (top view)

2.2 Pin definitions and functions

Table 1Pin definitions and functions

Pin	Symbol	Function
1	ĪNH	Inhibit input High level to turn on the IC.
2	GND	Ground
		Connected to pin 5.
3	I	Input voltage
4	Q	Output voltage Must be blocked with a capacitor $C_Q \ge 2.2 \mu\text{F}$, ESR 3 Ω to 10 Ω .
5	GND	Ground Connected to pin 2.

General product characteristics

General product characteristics 3

Absolute maximum ratings 3.1

Absolute maximum ratings¹⁾ Table 2

 $T_i = -40^{\circ}$ C to 150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Input		-			-		<u>.</u>
Voltage	V	-42	-	45	V	-	P_3.1.1
Current	I _I	-	-	-		2)	
Output			-				
Voltage	V _Q	-6	-	30	V	-	P_3.1.2
Current	I _I	-	_	-		2)	
Inhibit			-				
Voltage	VINH	-42	-	45	V	-	P_3.1.3
Current	/ _{INH}	-500	_	2)	μΑ	-	P_3.1.4
		-5	-	5	mA	$-0.3 V \le V_1 \le 45 V;$ $t_p < 1 ms$	P_3.1.5
Temperatures	Į	-	_	-	-	<u></u> Р	Į
Junction temperature	T _i	-40	_	150	°C	_	P_3.1.6

T_{stg} 1) Not subject to production test, specified by design.

2) Internally limited.

Storage temperature

Notes

1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

-50

2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

150

°C

_

P_3.1.7

General product characteristics

3.2 Functional range

Table 3Functional range

Parameter	Symbol	nbol Values		Unit	Note or Test Condition	Number	
		Min.	Тур.	Max.			
Input voltage	VI	4.0	-	45	V	TLE4296GV33	P_3.2.1
		5.5	-	45	V	TLE4296GV50	P_3.2.2
Inhibit voltage	V _{INH}	-0.3	-	40	V	-	P_3.2.3
Junction temperature	T _j	-40	-	150	°C	-	P_3.2.4

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the electrical characteristics table.

3.3 Thermal resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to **www.jedec.org**.

Table 4Thermal resistance

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Junction to ambient	R _{thJA}	-	179	-	K/W	Zero airflow zero heat sink area ¹⁾	P_3.4.1
Junction to soldering point	R _{thJSP}	-	30	-	K/W	measured to Pin 5	P_3.4.2

1) Worst case regarding peak temperature.

Electrical characteristics

4 Electrical characteristics

4.1 Electrical characteristics voltage regulator

Table 5 Electrical characteristics voltage regulator

 $V_{\rm I}$ = 13.5 V; $V_{\rm INH}$ > 2.5 V; $T_{\rm j}$ = -40°C to +150°C; all voltages with respect to ground (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Output voltage TLE4296GV33	V _Q	3.17	3.30	3.43	V	$1 \text{ mA} \le I_Q \le 30 \text{ mA}$ $V_1 = 13.5 \text{ V}$	P_5.1.1
		3.17	3.30	3.43	V	$I_{\rm Q} = 10 \text{ mA};$ 4.3 V $\leq V_{\rm I} \leq 40 \text{ V}$	P_5.1.2
Output voltage TLE4296GV50	V _Q	4.80	5.00	5.20	V	$1 \text{ mA} \le I_Q \le 30 \text{ mA}$ $V_1 = 13.5 \text{ V}$	P_5.1.18
		4.80	5.00	5.20	V	$I_{\rm Q} = 10 \text{ mA};$ 6 V $\leq V_{\rm I} \leq 40 \text{ V}$	P_5.1.19
Output current limitation	I _Q	30	-	-	mA	1)	P_5.1.3
Dropout voltage	V _{dr}	-	250	300	mV	I _Q = 20 mA	P_5.1.4
Output capacitor	C _Q	2.2	_	-	μF	ESR 3 Ω to 10 Ω at 100 kHz	P_5.1.5
$\overline{\text{Current consumption}}$ $I_{q} = I_{1} - I_{Q}$	l _q	-	2	4.5	mA	I _Q < 30 mA	P_5.1.6
		-	110	170	μA	I _Q < 1 mA; T _i < 85°C	P_5.1.7
$\overline{Quiescent current (stand-by)}$ $I_{q} = I_{1} - I_{Q}$	l _q	-	-	1	μA	V _{INH} = 0.4 V; T _j < 85°C	P_5.1.8
		-	_	5	μA	$V_{\overline{\text{INH}}} = 0.4 \text{ V}$	P_5.1.9
Load regulation	$\Delta V_{\rm Q}$	-	10	20	mV	$1 \text{ mA} < I_Q < 25 \text{ mA}; T_j = 25^{\circ}\text{C};$	P_5.1.10
Line regulation	ΔV _Q	-	5	20	mV	$V_{\rm I} = (V_{\rm Q,nom} + 0.5 \text{ V}) \text{ to } 36 \text{ V};$ $I_{\rm Q} = 5 \text{ mA}; T_{\rm j} = 25^{\circ}\text{C}$	P_5.1.12
Power supply ripple rejection	PSRR	-	60	_	dB	$f_{\rm r} = 100 {\rm Hz}; V_{\rm r} = 0.5 V_{\rm pp}$	P_5.1.13
Logic Inhibit input						· · · · · · · · · · · · · · · · · · ·	
Inhibit, turn-on voltage	$V_{\overline{\text{INH,high}}}$	-	-	2.2	V	$V_{\rm Q}$ > 0.95 × $V_{\rm Q,nom}$	P_5.1.14
Inhibit, turn-off voltage	V _{INH, low}	0.4	-	-	V	$V_{\rm Q} < 0.1 \rm V$	P_5.1.15
H-input current	V _{INH,high}	-	8	12	μΑ	$V_{\overline{\text{INH}}} = 5 \text{ V}$	P_5.1.16
L-input current	V _{INH, low}	-2	-	2	μA	$V_{\overline{\text{INH}}} = 0 \text{ V}$	P_5.1.17

1) Measured when the output voltage V_{Q} has dropped 100 mV from the nominal value.

Electrical characteristics

4.2 Typical performance characteristics voltage regulator

Output voltage V_Q vs. input voltage V_I

Current consumption I_q vs. input voltage V_1

Application information

5 Application information

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

Figure 3 Application diagram

The output voltage of the TLE4296G is divided and compared to an internal reference of 2.5 V typical. A regulation loop controls the output to achieve a stabilized output voltage.

Figure 3 shows a typical application circuit. In order to maintain the stability of the control loop the TLE4296G output requires an output capacitor C_Q of at least 2.2 µF with a minimum required ESR of 3 Ω and a maximum allowed ESR of 10 Ω . It is recommended to use for C_Q a suitable tantalum capacitor (e.g. the EPCOS 3.3 µF / 16V B45196P3335M209 or 4.7 µF / 10V B45196-P247M109) or a multilayer ceramic capacitor with a sufficiently dimensioned series resistor in order to cover the required ESR range over the full operating temperature range of $T_i = -40^{\circ}$ C to +150°C.

At the input of the regulator a capacitor is required for compensating line influences (100 nF ceramic capacitor recommended). A resistor of approximately 1Ω in series with the input capacitor C_1 can dampen oscillations that could occur due to the input line inductance and the input capacitor.

Package information

6 Package information

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

¹⁾ Dimensions in mm

Revision history

7 Revision history

Revision	Date	Changes
1.21	2023-05-10	Editorial change
1.2	2021-05-05	Updated layout and structure Deleted 3.0 V version Editorial changes Added TOC
1.1	2008-04-21	Initial version of RoHS-compliant derivate of TLE4296 Page 1: AEC certified statement and Marking information added Chapter 6: RoHS compliance and Green product feature added Further editorial changes
1.0	2004-01-01	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-05-10 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference Z8F55167454

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.