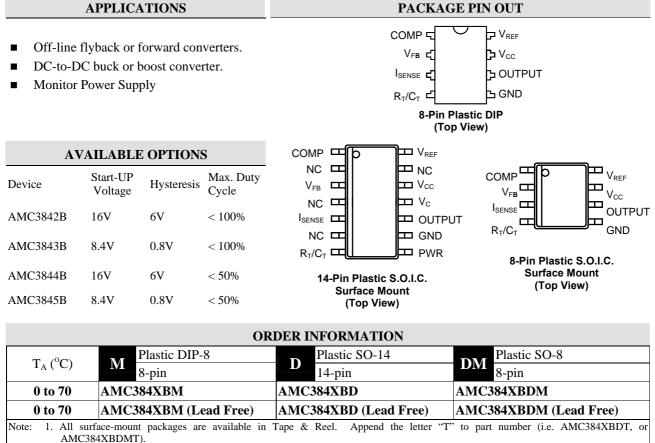


DESCRIPTION

The AMC3842B/43B/44B/45B are fixed frequency current-mode PWM controllers specially designed for OFF-Line switching power supply and DC-to-DC converters with a minimum number of external components. These www.DataSheetdevices feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and high current totem pole output which is suitable for driving MOSFETs.


The under voltage lock-out (U.V.L.O.) is designed to operated with 200μ A start-up current in typical, allowing an efficient bootstrap supply voltage design. The U.V.L.O. thresholds for the AMC3842B/44B are 16V (on) and 10V (off), which are ideal for off-line applications. The corresponding typical threshold for the AMC3843/45BB is 8.4V (on) and 7.6V (off). The AMC3842B/43B can operate within 100% duty cycle and the AMC3844B/45B can operate within 50% duty cycle.

AMC3842B/43B/44B/45B

CURRENT MODE PWM CONTROLLER

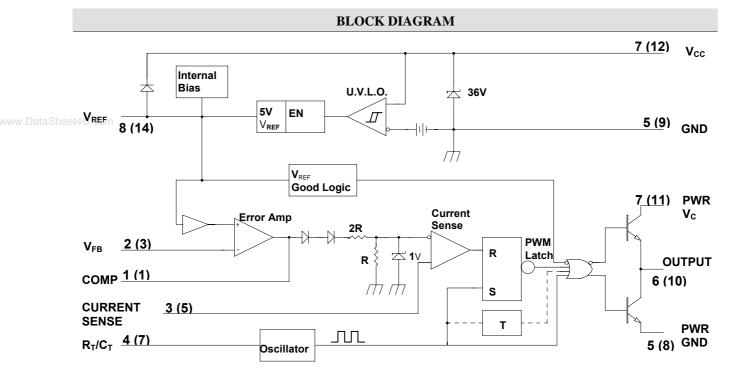
FEATURES

- Low Start-Up current (max. 200µA)
- Optimized for Off-Line and DC-to-DC Converters
- Maximum Duty Cycle
- U.V.L.O. with Hysteresis
- Operating Frequency Up to 500KHz
- Internal Trimmed Bandgap Reference
- High Current Totem Pole Output
- Error Amplifier With Low Output Resistance
- Available in 8-Pin Plastic DIP and Surface Mount 14-Pin S.O.I.C.
- Identical pin assignment to earlier UC384X series.

2. The letter "F" is marked for Lead Free process.

Copyright © 2006 ADDtek Corp.

DD019_F -- OCTOBER 2006


AMC3842B/43B/44B/45B

ABSOLUTE MAXIMUM RATINGS (Note 1)	
Supply voltage, V _{CC}	35V
Output current, I _O	±1A
Analog inputs, V _I	-0.3V to 6.3V
Error amp output sink current, I _{SINK(EA)}	10mA
Power dissipation ($T_A = 25^{\circ}C$), P_D	1W
Maximum juncture temperature, T _J	150°C
Storage temperature range	-65°C to 150°C
Lead temperature (soldiering, 10 seconds)	260°C
Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to Grounegative out of the specified terminal.	und. Currents are positive into,

THERMAL DATA

M PACKAGE:	
Thermal Resistance-Junction to Ambient, θ_{JA}	95 °C/W
D PACKAGE:	
Thermal Resistance-Junction to Ambient, θ_{JA}	120 °C/W
DM PACKAGE:	
Thermal Resistance-Junction to Ambient, θ_{JA}	165 °C/W
Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{J_A})$. The θ_{J_A} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.	

AMC3842B/43B/44B/45B

() are 14 Pin S.O.I.C. pin number

- Note 2: V_{CC} and PWR V_C are internally connected for 8 pin packages.
- Note 3: PWR GND and GND are internally connected for 8 pin packages.
- Note 4: U.V.L.O. is 16V for 3842B/44B and 8.4V for 3843B/45B.
- Note 5: Hysteresis is 6V for 3842B/44B and 0.8V for 3843B/45B.
- Note 6: Toggle flip flop used only in 3844B/45B

AMC3842B/43B/44B/45B

RECOMMENDED OPERATING CONDITIONS						
Doromotor	Symbol	Recommended Operating Conditions			I Inite	
Parameter	Symbol	Min.	Тур.	Max.	Units	
Supply Voltage	V_{CC} / V_{C}			30	V	
Input Voltage	$V_I, R_T/C_T$	0		5.5	V	
4U.com	$V_{I},\!I_{SENSE}\!/V_{FB}$	0	5.5		v	
Output Voltage	V ₀ , Output	0		30	V	
Supply Current	I _{CC}			25	mA	
Average Output Current	Io			200	mA	
Reference Output Current	I _{O(REF)}			-20	mA	
Timing Capacitor	C_{T}	1			nF	
Oscillator Frequency	f_{OSC}		100	500	KHz	
Operating Free-air Temperature	T _A	0		70	°C	

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperature for AMC384XB with $0^{\circ}C \le T_{A} \le 70^{\circ}C$; $V_{CC} = 15V(note 7)$; $R_{T} = 10K; C_{T} = 3.3nF$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Doromotor	Symbol	Test Can litians	AMC384XB			I.L. '
Parameter	Symbol Test Conditions		Min.	Тур.	Max.	Units
Reference Section						
Reference output Voltage	V_{REF}	$T_{J} = 25 ^{o}C, I_{REF} = 1mA$	4.9	5.0	5.1	V
Line Regulation		$12V \le V_{CC} \le 25V, T_J = 25 ^{\circ}C$		6	20	mV
Load Regulation		$1\text{mA} \le I_{\text{REF}} \le 20\text{mA}$		6	25	mV
Short Ciruit Output Current	I _{SC}	$T_J = 25 ^{\circ}C$	-30	-100	-180	mA
Oscillator Section						
Oscillation Frequency	f	$T_J = 25 \ ^{\circ}C$	47	52	57	KHz
Frequency Change with Voltage		$12V \le V_{CC} \le 25V$		0.2	1.0	%
Frequency Change with Temperature (note 8)		$T_{MIN} \leq T_A \leq T_{MAX}$		5		%
Peak-to-peak Amplitude At R_T/C_T	V _{OSC}			1.7		V
Current Sense Section						
Gain (note 9 & 10)	A _{VOL}		2.85	3.00	3.15	V/V
Maximum Input Signal (note 9)	V _{I(MAX)}	COMP = 5V	0.9	1.0	1.1	V
Power Supply Rejection Ratio (note 9)	PSRR	$12V \le V_{CC} \le 25V$ (note 9)		70		dB
Input Bias Current	I _{BIAS}			-3.0	-10	μΑ

4

AMC3842B/43B/44B/45B

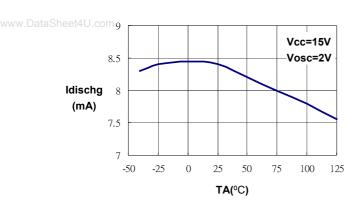
	CIMENE	TIANACTERISTICS (Continued	•)			
Error Amplifier Section						
Input Bias Current	I _{BIAS}			-0.1	-2	μΑ
Input Voltage	V _{I(EA)}	COMP = 2.5V	2.42	2.50	2.58	V
Open Loop Voltage Gain	G _{VO}	$2V \le V_0 \le 4V$	65	90		dB
Unity Gain Bandwidth (note 8)	UGBW	$T_J = 25 ^{\circ}C$	0.7	1		MHz
Power Supply Rejection Ratio	PSRR	$12V \le V_{CC} \le 25V$	60	70		dB
Output Sink Current	I _{SINK}	$V_{FB} = 2.7V, COMP = 1.1V$	2	7		mA
Output Source Current	I _{SOURCE}	$V_{FB} = 2.3V, COMP = 5.0V$	-0.5	-1.0		mA
High Output Voltage	V _{OH}	$V_{FB} = 2.3V$, $R_L = 15K\Omega$ to GND	5	6		V
Low Output Voltage	V _{OL}	V_{FB} = 2.7V, RL = 15K Ω to V_{REF}		0.7	1.1	V
Output Section						
	V	$I_{SINK} = 20 m A$		0.1	0.4	v
Output Low Level	V _{OL}	$I_{SINK} = 200 \text{mA}$		1.4	2.2	v
Output High Laugh	V _{OH}	$I_{\text{SOURCE}} = 20 \text{mA}$	13	13.5		V
Output High Level		$I_{SOURCE} = 200 \text{mA}$	12	13.0		V
Rise Time (note 9)	t _r	$T_J = 25 ^{o}C, C_L = 1nF$		50	150	ns
Fall Time (note 9)	t _f	$T_J = 25 ^{o}C, C_L = 1nF$		50	150	ns
Under-Voltage Lockout Section						
Start Threshold	V _{TH(ST)}	AMC3842B/44B	14.5	16.0	17.5	v
Start Threshold		AMC3843B/45B	7.8	8.4	9.0	v
Min. Operating Voltage		AMC3842B/44B	8.5	10	11.5	v
wini. Operating voltage		AMC3843B/45B	7.0	7.6	8.2	v
PWM Section						
	Dmor	AMC3842B/43B	94	97	100	%
Maximum Duty Cycle	Dmax	AMC3844B/45B	47	48	50	%0
Total Standby Current	H			r		I
•		AMC3842B/44B			0.2	mA
Startup Current		AMC3843B/45B			0.2 m	
Operating Supply Current	I _{CC}	$V_{FB} = I_{SENSE} = 0V$		14	17	mA
Zener Voltage	Vz	$I_{CC} = 25 \text{mA}$	30	35		V

ELECTRICAL CHARACTERISTICS (Continued)

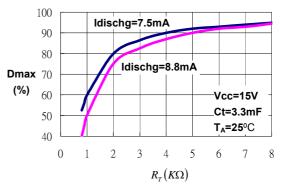
Note 7: Adjust V_{CC} above the start threshold before setting at 15V

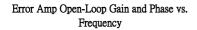
Note 8: These parameters, although guaranteed, are not 100% tested in production prior to shipment

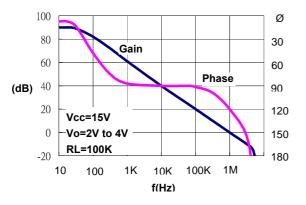
Note 9: Parameters are measured at trip point of latch with $V_{FB} = 2V$

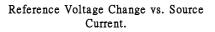

Note 10: Gain is measured between I_{SENSE} and COMP with the input changing from 0V to 0.8V

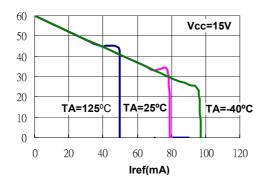
AMC3842B/43B/44B/45B

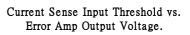

CHARACTERIZATION CURVES

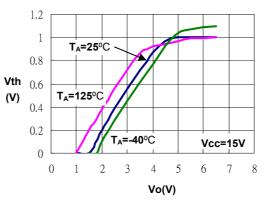

Below characterization curves was referenced by Fig.4

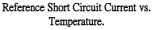

Oscillator Discharge Current vs. Temperature

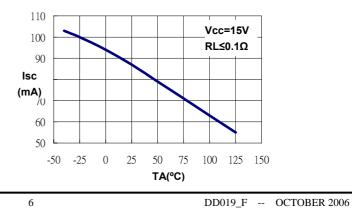



Maximum Output Duty Cycle vs. Timing Resistor









Copyright © 2006 ADDtek Corp.

www.DataSheet4U.com

AMC3842B/43B/44B/45B

APPLICATION INFORMATION

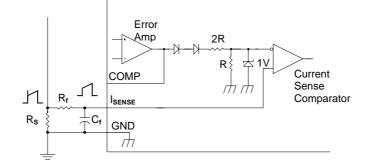
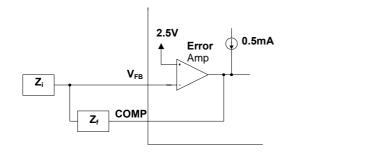



Fig. 1. Current Sense Circuit Peak current (I_S) is set by: $I_{S(MAX)} = 1V/R_S$

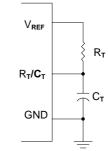
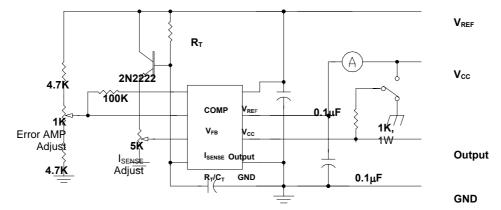



Fig. 3. Oscillator Section For $R_T < 5K$, $f = \frac{1.72}{R_T C_T}$

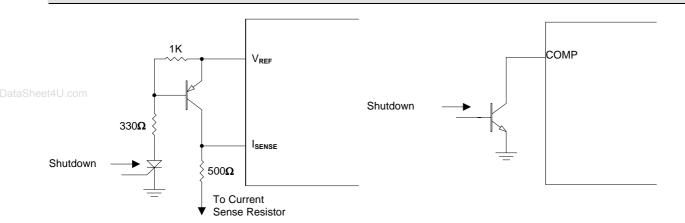
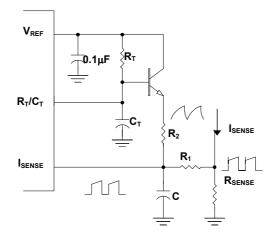


Fig. 4. Open-loop laboratory test fixture: Carefuc grounding techniques are necessary for high peak currents associated with capacitive loads. Timing and bypass capacitors should be connected to GND pin in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to the I_{SENSE} pin

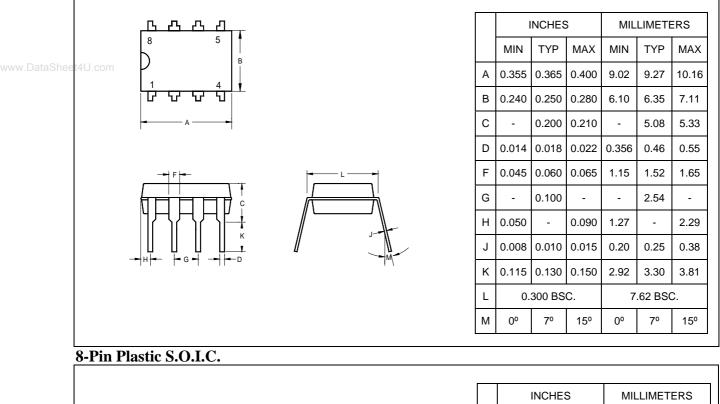
Copyright © 2006 ADDtek Corp.

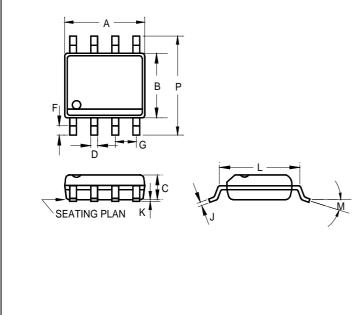

DD019_F -- OCTOBER 2006

AMC3842B/43B/44B/45B

APPLICATION INFORMATION (continued)

Fig. 5. Shutdown Techniques - there are two ways to shutdown the PWM controller: 1) raise the voltage at I_{SENSE} above 1V or, 2) pull the COMP below a voltage two diodes above ground.



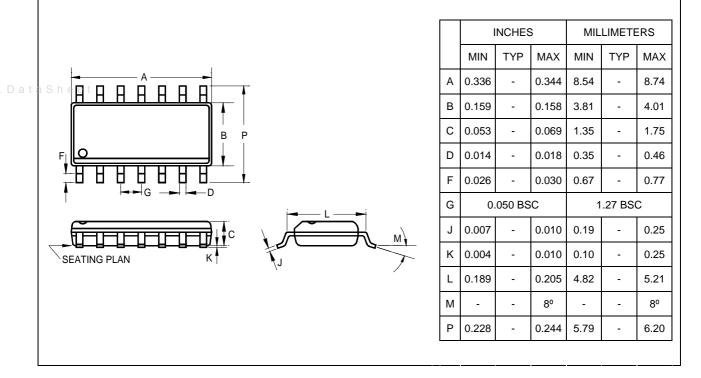

Fig 6. Slop Compensation – To achieve duty cycles over 50% for some applications, the above slope compensation technique is suggested by resistively summing a fraction of the oscillator ramp with the current sense signal.

8-Pin Plastic DIP

AMC3842B/43B/44B/45B

PACKAGE

	INCHES			MILLIMETERS		
	MIN	TYP	MAX	MIN	TYP	MAX
А	0.183	-	0.202	4.65	-	5.13
В	0.144	0.156	0.163	3.66	3.95	4.14
С	0.068	-	0.074	1.35	-	1.88
D	0.010	0.016	0.020	0.25	0.41	0.51
F	0.015	0.020	0.035	0.38	0.50	0.89
G	0.050 BSC			1.27 BSC		
J	0.007	-	0.010	0.19	-	0.25
Κ	0.005	-	0.010	0.13	-	0.25
L	0.189	-	0.205	4.80	-	5.21
М	0°	-	8°	0°	-	8°
Ρ	0.228	0.236	0.244	5.79	6.00	6.20


Copyright © 2006 ADDtek Corp.

DD019_F -- OCTOBER 2006

9

AMC3842B/43B/44B/45B

14-Pin Plastic S.O.I.C.

AMC3842B/43B/44B/45B

IMPORTANT NOTICE

ataSheet4U.com

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp. 9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105 TEL: 2-25700299 FAX: 2-25700196

Copyright © 2006 ADDtek Corp.

11