

AK4526A High Performance Multi-channel Audio CODEC

GENERAL DESCRIPTION

The AK4526A is a single chip CODEC that includes two channels of ADC and six channels of DAC. The ADC outputs 20bit data and the DAC accepts up to 24bit input data. The ADC has an enhanced dual bit architecture with wide dynamic range. The DAC achieves low outband noise and high jitter tolerance by use of SCF(switched capacitor filter) techniques. An auxiliary digital audio input interface maybe used instead of the ADC for passing audio data to the primary audio output port. Control may be set directly by pins or programmed through a separate serial interface.

The AK4526A has a dynamic range of 100dB and is well suited for digital surround for home theater and car audio. An AC-3 system can be built with a IEC958(SPDIF) receiver such as the AK4110. The AK4526A is available in a small 44pin LQFP package which will reduce system space. *AC-3 is a trademark of Dolby Laboratories.

FEATURES

- 2ch ADC with 20bit data output capability
 - 64x Oversampling
 - Sampling Rate up to 48kHz
 - Differential Inputs with single-ended use capability
 - S/(N+D): 92dB
 - Dynamic Range, S/N: 100dB
 - Digital HPF for offset cancellation
 - I/F format: MSB justified or I²S
- 6ch DAC with 24bit data input capability
 - 128x Oversampling
 - Sampling Rate up to 96kHz
 - Single-Ended Outputs
 - 2nd order SCF
 - S/(N+D): 90dB
 - Dynamic Range: 100dB
 - S/N: 100dB, 108dB(Mute)
 - I/F format: MSB justified, LSB justified or I²S
 - Individual attenuation control with 21 levels and 1dB step
- De-emphasis for 32kHz, 44.1kHz, 48kHz and 96kHz
- High Jitter Tolerance
- TTL Level Digital I/F
- Serial uP I/F for mode setting
- Master clock: 256fs, 384fs or 512fs for fs=32kHz to 48kHz 128fs, 192fs or 256fs for fs=96kHz
- Power Supply: 4.5 to 5.5V
- Small 44pin LQFP

Block Diagram

www.DataSheet4U.com

Block Diagram (DIR and AC-3 DSP are external parts)

Ordering Guide

```
www.DataSheet4U.com
```

AK4526AVQ $-10 \sim +70^{\circ}$ C44pin LQFP (0.8mm pitch)AKD4526AEvaluation Board for AK4526A

Pin Layout

			PIN/FUNCTION
)ataS	heet4U.com	L/O	Evention
INO.	Pin Name	1/0	Function
	0000	T	SDTO Source Select Pin
1	SDOS	I	"L": Internal ADC output, "H": DAUX input
			ORed with serial control register if $P/S = "L"$.
			MCKO Clock Frequency Select Pin
2	OCKS	Ι	"L": MCLK, "H": MCLK/2
			ORed with serial control register if $P/S = "L"$.
2	M	т	Audio Data Master/Slave Mode Select Pin
3	IVI/ 5	1	"L": Slave mode, "H": Master mode
4	BICK	I/O	Audio Serial Data Clock Pin
5	LRCK	I/O	Input/Output Channel Clock Pin
6	SDTI1	Ι	DAC1 Audio Serial Data Input Pin
7	SDTI2	Ι	DAC2 Audio Serial Data Input Pin
8	SDTI3	Ι	DAC3 Audio Serial Data Input Pin
9	SDTO	0	Audio Serial Data Output Pin
10	DAUX	Ι	AUX Audio Serial Data Input Pin
			Double Speed Sampling Mode Pin
11	DFS	Ι	"L": Normal Speed, "H": Double Speed, the ADC is powered down.
			ORed with serial control register if $P/\overline{S} = "L"$.
10	DEM (1	т	De-emphasis Pin
12	DEMI	1	ORed with serial control register if $P/S = "L"$.
			De-emphasis Pin
13	DEM0	Ι	ORed with serial control register if $P/S = "L"$
14	МСКО	0	Master Clock Output Pin
15	DVDD	-	Digital Power Supply Pin
16	DVSS	-	Digital Ground Pin
			Power-Down & Reset Pin
			When "L", the AK4526A is powered down and the control registers are reset to defai
17	PD	I	state. If the state of P/S, M/S , CAD0-1 changes, then the AK4526A must be res
			by PD
			X'tal oscillator Select/Test Mode Pin
18	XTS	Ι	"H": X'tal Oscillator selected
			"L": External clock source selected
19	ICKS1	Ι	Input Clock Select 1 Pin
20	ICKS0	Ι	Input Clock Select 0 Pin
21	CADI	т	Chip Address Pin
21	CADI	1	Used during the serial control mode.
22	CADO	т	Chip Address Pin
22	CADO	1	Used during the serial control mode.
23	LOUT3	0	Lch #3 Analog Output Pin
24	ROUT3	0	Rch #3 Analog Output Pin
25	LOUT2	0	Lch #2 Analog Output Pin
26	ROUT2	0	Kcn #2 Analog Output Pin
27	LOUTI	0	Len #1 Analog Output Pin
28		U 1	KCII #1 Analog Output Pin
29	LIN-	I T	Len Analog Negative Input Pin
30		I T	Peh Analog Negative Input Pin
22		T I	Ren Analog Negative Input Fin
54		1	

	No.	Pin Name	I/O	Function
/ww	D 33 IS	VREFL	Ι	Negative Voltage Reference Input Pin, AVSS
	34	VCOM	0	Common Voltage Output Pin, AVDD/2 Large external capacitor is used to reduce power-supply noise.
	35	VREFH	Ι	Positive Voltage Reference Input Pin, AVDD
	36	AVDD	I	Analog Power Supply Pin
	37	AVSS	-	Analog Ground Pin
	38	XTI	Ι	X'tal Input Pin
	39	XTO	0	X'tal Output Pin if XTS="H"
		MCKI	Ι	External Master Clock Input Pin if XTS="L"
	40	P/S	Ι	Parallel/Serial Select Pin "L": Serial control mode, "H": Parallel control mode
	41	DIF0	Ι	Audio Data Interface Format Pin in parallel mode
		CS	Ι	Chip Select Pin in serial mode
	42	DIF1	Ι	Audio Data Interface Format Pin in parallel mode
		CCLK	Ι	Control Data Clock Pin in serial mode
	43	LOOP0	Ι	Loopback Mode Pin in parallel mode Enables digital loop-back from ADC to 3 DACs.
		CDTI	Ι	Control Data Input Pin in serial mode
	44	LOOP1	Ι	Loopback Mode Pin in parallel mode Enables all 3 DAC channels to be input from SDTI1.
		CDTO	0	Control Data Output Pin in serial mode

If pins XTS, ICKS0, ICKS1, \overline{PD} , P/S, DFS, DEM0, DEM1, CAD0, CAD1, M/S, OCKS, SDOS are not driven, then XTS, ICKS0, ICKS1, CAD0, CAD1 must be tied to either AVSS or AVDD. \overline{PD} , P/S, DFS, DEM0, DEM1, M/S, OCKS, SDOS must be tied to either DVSS or DVDD.

ABSOLUTE MAXIMUM RATINGS

www.E(AVSS, DVSS=0V; Note 1)

Parameter	.,	Symbol	min	max	Units
Power Supplies	Analog	AVDD	-0.3	6.0	V
	Digital	DVDD	-0.3	6.0	V
	AVSS-DVSS (Note 2)	ΔGND	-	0.3	V
Input Current (any	pins except for supplies)	IIN	-	±10	mA
Analog Input Volt	tage	VINA	-0.3	AVDD+0.3	V
Digital Input Volt	age	VIND	-0.3	DVDD+0.3	V
Ambient Tempera	ture (power applied)	Та	-10	70	°C
Storage Temperat	ure	Tstg	-65	150	°C

Note: 1. All voltages with respect to ground.

2. AVSS and DVSS must be same voltage level.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

	RECOMMENDED OPERATING CONDITIONS								
(AVSS, DVSS=0V;	Note 1)								
Parameter		Symbol	min	typ	max	Units			
Power Supplies	Analog	AVDD	4.5	5.0	5.5	V			
(Note 3)	Digital	DVDD	4.5	5.0	5.5	V			

Note: 1. All voltages with respect to ground.

3. The power up sequence between AVDD and DVDD is not critical.

*AKM assumes no responsibility for the usage beyond the conditions in this datasheet.

ANALOG CHARACTERISTICS www.l(Ta=25°C; AVDD, DVDD=5V; AVSS, DVSS=0V; VREFH=AVDD, VREFL=AVSS; fs=44.1kHz; Signal Frequency =1kHz; 20bit Data; Measurement Frequency=10Hz ~ 20kHz; unless otherwise specified)

Parameter	<u> </u>	min	typ	max	Units
ADC Analog Input Characteristics: Different	tial Inputs; Ana	log Source In	npedance=47	0Ω	
Resolution				20	Bits
S/(N+D) (-0.5dB Input)	(Note 4)	84	92		dB
DR (-60dB Input, A-Weighted)		94	100		dB
S/N (A-Weighted)	94	100		dB	
Interchannel Isolation	90	110		dB	
DC Accuracy					
Interchannel Gain Mismatch			0.2	0.3	dB
Gain Drift			20	-	ppm/°C
Input Voltage AIN=0.6x(VREFH-VREF	L) (Note 6)	2.85	3.0	3.15	Vpp
Input Resistance		20	30		kΩ
Power Supply Rejection	(Note 7)		50		dB
DAC Analog Output Characteristics:					
Resolution				24	Bits
S/(N+D)	fs=44.1kHz	80	90		dB
	fs=96kHz	78	88		dB
DR (-60dB Output, A-Weighted)	fs=44.1kHz	95	100		dB
	fs=96kHz	94	100		dB
S/N (A-Weighted) (Note 5)	fs=44.1kHz	95	100		dB
(Note 8)	fs=96kHz	94	100		dB
Interchannel Isolation		90	110		dB
DC Accuracy				1	
Interchannel Gain Mismatch			0.2	0.5	dB
Gain Drift			20	-	ppm/°C
Output Voltage AOUT=0.6x(VREFH-	-VREFL)	2.75	3.0	3.25	Vpp
Load Resistance		5			kΩ
Power Supply Rejection	(Note 7)		50		dB
Output Volume					
Step Size		0	1		dB
Attenuation Control Range		-20		0	dB
Power Supplies					
Power Supply Current (AVDD+DVDD)					
Normal Operation (PD ="H")					
DFS="L" (No	te 9)		113	157	mA
Power-down mode (PD ="L")					
	te 10)		1	2	mΔ

Note: 4. In case of single ended input, S/(N+D)=83dB(typ, @AVDD=5V).

5. S/N measured by CCIR-ARM is 96dB at each converter and 94dB at ADC to DAC loopback.

6. Full scale input for each AIN+/- pin is 1.5Vpp in differential mode.

7. PSR is applied to AVDD, DVDD with 1kHz, 50mVpp. VREFH/VREFL pin is held a constant voltage.

8. DR and S/N at BW=40kHz are typically 93dB.

9. Typically, AVDD=90mA, DVDD=23mA. When DFS="H", AVDD=76mA and DVDD=22mA.

10. All digital input pins are held DVDD or DVSS. When XTS="H", typically 15mA.

	FIL	TER CHAR	ACTERISTI	CS (fs=44.1	kHz)		
(Ta=25°C; AVDD, DVI	DD=4.5 ~ 5.5	V; DEM=OFI	F)				
Parameter			Symbol	min	typ	max	Units
ADC Digital Filter (De	cimation LPI	F):					
Passband	(Note 11)	-0.005dB	PB	0		19.76	kHz
		-0.02dB		0		20.02	kHz
		-0.06dB		0		20.20	kHz
		-6.0dB		0		22.05	kHz
Stopband			SB	24.34			kHz
Passband Ripple			PR			±0.005	dB
Stopband Attenuation			SA	80			dB
Group Delay	(Note 12)		GD		29.3		1/fs
Group Delay Distortion			ΔGD		0		us
ADC Digital Filter (HI	PF):						
Frequency Response	(Note 11)	-3dB	FR		0.9		Hz
		-0.5dB			2.7		Hz
		-0.1dB			6.0		Hz
DAC Digital Filter:							
Passband	(Note 11)	-0.06dB	PB	0		20.0	kHz
		-6.0dB		0		22.05	kHz
Stopband			SB	24.1			kHz
Passband Ripple			PR			±0.06	dB
Stopband Attenuation			SA	43			dB
Group Delay	(Note 12)		GD		14.7		1/fs
DAC Digital Filter + A	nalog Filter:						
Frequency Response:	$0 \sim 20.0 \text{kHz}$	Z	FR	-	±0.2	_	dB

Notes: 11. The passband and stopband frequencies scale with fs.

For example, 20.02kHz at -0.02dB is 0.454 x fs. The reference frequency of these responses is 1kHz.

12. The calculating delay time which occurred by digital filtering. This time is from setting the input of analog signal to setting the 20bit data of both channels to the output register for ADC. For DAC, this time is from setting the 20/24 bit data of both channels on input register to the output of analog

For DAC, this time is from setting the 20/24bit data of both channels on input register to the output of analog signal.

	FILTER CHARACTERISTICS (fs=96kHz)								
(Ta=25°C; AVDD, DV	(Ta=25°C; AVDD, DVDD=4.5 ~ 5.5V; DEM=OFF)								
Parameter			Symbol	min	typ	max	Units		
DAC Digital Filter:									
Passband	(Note 13)	-0.06dB	PB	0		43.5	kHz		
		-6.0dB		0		48.0	kHz		
Stopband			SB	52.5			kHz		
Passband Ripple			PR			±0.06	dB		
Stopband Attenuation			SA	43			dB		
Group Delay	(Note 12)		GD		14.7		1/fs		
DAC Digital Filter + Analog Filter:									
Frequency Response:	0	~ 20.0kHz	FR		±0.2		dB		
		40kHz	FR		-2		dB		

Note:13. The passband and stopband frequencies scale with fs. The reference frequency of these responses is 1kHz.

	DIGITAL CHARACTERISTICS								
(Ta=25°C; AVDD, DVDD=4.	[(Ta=25°C; AVDD, DVDD=4.5 ~ 5.5V)								
Parameter		Symbol	min	typ	max	Units			
High-Level Input Voltage	(XTS pin)	VIH1	90%DVDD	-	-	V			
(All pins o	except XTS pin)	VIH2	2.2	-	-	V			
Low-Level Input Voltage	(XTS pin)	VIL1	-	-	10%DVDD	V			
(All pins o	except XTS pin)	VIL2	-	-	0.8	V			
Hight-Level Output Voltage	(Iout= -1mA)	VOH	DVDD-0.4	-	-	V			
Low-Level Output Voltage	(Iout= 1mA)	VOL	-	-	0.4	V			
Input Leakage Current		Iin	-	-	±10	uA			

	SWITCHING CHARACTERISTICS								
(Ta=25°C; AVDD, DV	$VDD=4.5 \sim 5.5V; C_L=20pF$)							
Parameter		Symbol	min	typ	max	Units			
Master Clock Input	256fs:	fCLK	8.192		12.288	MHz			
-	Pulse Width Low	tCLKL	27			ns			
	Pulse Width High	tCLKH	27			ns			
	384fs:	fCLK	12.288		18.432	MHz			
	Pulse Width Low	tCLKL	20			ns			
	Pulse Width High	tCLKH	20			ns			
	512fs:	fCLK	16.384		24.576	MHz			
	Pulse Width Low	tCLKL	15			ns			
	Pulse Width High	tCLKH	15			ns			
MCKO Output	Frequency	fMCK	4.096		24.576	MHz			
	Duty (XTS="H")	dMCK	40	50	60	%			
LRCK frequency									
DAC Normal Spe	eed Mode (DFS="0")	fsn	32		48	kHz			
DAC Double Spe	ed Mode (DFS="1")	fsd	64		96	kHz			
Duty Cycle		Duty	45		55	%			
Audio Interface Timi	ng								
Slave mode									
BICK Period		tBCK	160			ns			
BICK Pulse Widt	h Low	tBCKL	65			ns			
Pulse Widt	th High	tBCKH	65			ns			
LRCK Edge to B	ICK "↑" (Note 14)	tLRB	45			ns			
BICK "↑" to LRO	CK Edge (Note 14)	tBLR	45			ns			
LRCK to SDTO(MSB)	tLRS			40	ns			
BICK "↓" to SD	ГО	tBSD	10		50	ns			
SDTI Hold Time		tSDH	40			ns			
SDTI Setup Time	e	tSDS	25			ns			
Master mode									
BICK Frequency		fBCK		64fs		Hz			
BICK Duty		dBCK		50		%			
BICK " \downarrow " to LRO	CK	tMBLR	-20		20	ns			
BICK "↓" to SD	ГО	tBSD			50	ns			
SDTI Hold Time		tSDH	40			ns			
SDTI Setup Time	2	tSDS	25			ns			

Note 14. BICK rising edge must not occur at the same time as LRCK edge.

	Parameter		Symbol	min	typ	max	Units
www	Control Interface Timing						
	CCLK Period		tCCK	200			ns
	CCLK Pulse Width Low		tCCKL	80			ns
	Pulse Width High		tCCKH	80			ns
	CDTI Setup Time		tCDS	40			ns
	CDTI Hold Time		tCDH	40			ns
	CS "H" Time		tCSW	150			ns
	$\overline{\text{CS}}$ " \downarrow " to CCLK " \uparrow "		tCSS	50			ns
	CCLK " \uparrow " to PD " \uparrow "		tCSH	50			ns
	CCLK " \downarrow " to CDTO valid		tDCD			45	ns
	CS "↑" to CDTO Hi-Z		tCCZ			70	ns
	Rise Time of CS		tR1			20	ns
	Fall Time of CS		tF1			20	ns
	Rise Time of CCLK		tR2			20	ns
	Fall Time of CCLK		tF2			20	ns
	Reset Timing						
	PD Pulse Width	(Note 15)	tPD	150			ns
	\overline{PD} " \uparrow " to SDTO valid	(Note 16)	tPDV		516		1/fs

Note: 15. The AK4526A can be reset by bringing \overline{PD} "L" to "H" only upon power-up.

When X'tal mode(XTS="H"), at power-up, PD should be held "L" for 5ms to allow the X'tal oscillation to begin.

16. These cycles are the number of LRCK rising from PD rising.

Timing Diagram

ASAHI KASEI

M0037-E-02

OPERATION OVERVIEW

System Clock

The master clock can be either a crystal resonator placed across the XTI and XTO pin (XTS="H"), or external TTL level clock input to the MCKI pin (XTS="L") with the XTI pin left floating. The relationship between the master clock and the desired sample rate is defined in Table 1. The sampling rate corresponds to 32kHz ~ 48kHz at normal speed mode (DFS="0") and 64kHz ~ 96kHz (DFS="1"). The LRCK clock input must be derived from the master clock, and the phase is not critical. Either the same or a half frequency of XTI/MCKI frequency for the master clock output (MCKO) can be selected by OCKS. MCKO may be used as the master clock for the additional ADC or DAC. The ADC is powered down during double speed mode (DFS="1").

In slave mode, MCKI should be synchronized with LRCK but the phase is not critical. External clocks (MCKI, BICK) should always be present whenever the AK4526A is in normal operation mode ($\overline{PD} =$ "H"). If these clocks are not provided, the AK4526A may draw excess current because the device utilizes dynamic refreshed logic internally. If the external clocks are not present, the AK4526A should be in the power-down mode ($\overline{PD} =$ "L"). After exiting reset at power-up etc., the AK4526A is in the power-down mode until MCKI and LRCK are input.

No	ICKS1		XTI/N		
INO.	ICK51	ICK50	DFS="0"	DFS="1"	
0	0	0	256fs	128fs	at reset
1	0	1	384fs	192fs	
2	1	0	512fs	256fs	
3	1	1	256fs	256fs	

Table 1. Master clock frequency select

When changing DFS, some click noise may occur. At that case, the analog outputs should be muted externally or by the internal attenuators.

Figure 1. External mute timing at DFS change

When using crystal oscillator, external loading capacitor (~ 40pF to AVSS for XTI/XTO) are required. When X'tal mode (XTS="H"), at power-up, PD should be held "L" for 5ms to allow the X'tal oscillation to begin.

Figure 2. X'tal resonator connection (XTS="H")

De-emphasis Filter

www.DataSheet4U.com

The AK4526A includes the digital de-emphasis filter (tc=50/15us) by IIR filter. This filter corresponds to four sampling frequencies (32kHz, 44.1kHz, 48kHz, 96kHz). In parallel control mode (P/ \overline{S} ="H"), de-emphasis mode is selected by the DFS, DEM1 & DEM0 pins. In serial control mode (P/ \overline{S} ="L"), de-emphasis is set by OR of pins and register.

No.	DFS	DEM1	DEM0	Mode	
0	0	0	0	44.1kHz	
1	0	0	1	OFF	at reset
2	0	1	0	48kHz	
3	0	1	1	32kHz	
4	1	0	0	OFF	
5	1	0	1	OFF	
6	1	1	0	96kHz	
7	1	1	1	OFF	

Table 2. De-emphasis control

■ Digital High Pass Filter

The ADC has a digital high pass filter for DC offset cancel. The cut-off frequency of the HPF is 0.9Hz at fs=44.1kHz and also scales with sampling rate (fs).

Analog Volume Control

The DAC outputs include analog volume and may be independently attenuated in 1dB steps. Level changes attenuate the DAC and the internal filter noise with the signal until the residual noise floor is equal to the noise floor of the output buffer. Level changes only occur during zero-crossings to minimize audible artifacts. If these is no zero-crossings, then the level will change after a time-out. The time-out period scales with fs. The periods of 256/fs, 512/fs, 1024/fs and 2048/fs are selectable by TM1-0 bits. For each DAC channel, there is a register status bit that indicates if the level change has occurred. If the attenuation register is written to before the status flag is cleared , the previous level change is made and the timer is reset. Zero-crossing detection may be disabled by serial control.

The on-chip volume can attenuate the DAC output from 0dB to -20dB. Table 3 shows the S/N of the DAC at each attenuation level.

	Output Volume Setting							
	0dB	-10dB	-20dB					
A-weight	100dB	96dB	88dB					
CCIR-ARM	96dB	92dB	84dB					

Table 3. DAC S/N

■ Audio Serial Interface Format

www.DataSheet4U.com

The audio interface corresponds to both master mode and slave mode. LRCK and BICK are inputs in slave mode. For master mode, LRCK outputs fs clock and BICK outputs 64fs clock.

Four serial data modes can be selected by the DIF0 and DIF1 pins as shown in Table 4. In all modes the serial data is MSB-first, 2's compliment format. The SDTO is clocked out on the falling edge of BICK and the SDTI/DAUX are latched on the rising edge of BICK.

Figure 3-5 shows the timing at SDOS="L". In this case, the SDTO outputs the ADC output data. When SDOS="H", the data input to DAUX is converted to SDTO's format and output from SDTO. Mode 2 and mode 3 in SDTI/DAUX input formats can be used for 16-20bit data by zeroing the unused LSBs.

		DIF0	SD	ТО	OTI OTIO OTIO		
Mode	DIF1		ADC	DAUX	DALIX	LRCK	
			SDOS="L" SDOS="H"		DAUA		
0	0	0	20bit, MSB justified	20bit, MSB justified	20bit, LSB justified	H/L	
1	0	1	20bit, MSB justified	24bit, MSB justified	24bit, LSB justified	H/L	
2	1	0	20bit, MSB justified	24bit, MSB justified	24bit, MSB justified	H/L	
3	1	1	20bit, IIS (I2S)	24bit, IIS (I2S)	24bit, IIS (I2S)	L/H	

Table 4. Audio data formats

Figure 4. Mode 1 Timing *When SDOS="H", up to 24bit data is output from SDTO.

Figure 5. Mode 2 Timing *When SDOS="H", up to 24bit data is output from SDTO.

Figure 6. Mode 3 Timing *When SDOS="H", up to 24 bit data is output from SDTO.

Power-Down & Reset

www.DataSheet4U.com

The ADCs and DACs of AK4526A are placed in the power-down mode by bringing PD "L" and both digital filters are reset at the same time. PD "L" also reset the control registers to their default values. This reset should always be done after power-up. In case of the ADC, an analog initialization cycle starts after exiting the power-down mode. Therefore, the output data, SDTO becomes available after 516 cycles of LRCK clock. This initialization cycle does not affect the DAC operation. Figure 7 shows the power-up sequence.

- (1) The analog part of ADC is initialized after exiting the power-down state.
- (2) Digital output corresponding to analog input and analog output corresponding to digital input have the group delay (GD).
- (3) A/D output is "0" data at the power-down state.
- (4) Click noise occurs at the end of initialization of the analog part. Please mute the digital output externally if the click noise influences system application. Required muting time depends on the configuration of the input buffer circuits.

(5) Click noise occurs at the edge of PD.

(6) Please mute the analog output externally if the click noise (5) influences system application.

Figure 7. Power-up sequence

During the power-down mode, the crystal oscillator is left running if XTS="H". The condition of the outputs are as follows.

CDTO = high impedance SDTO = "L" MCKO = Clock out LRCK = "L" (master mode) BICK = "L" (master mode) AOUT = VCOM (AVDD/2)

Mode Control Interface

www.DataSheet4U.com

Control may be configured directly by pins during the parallel control mode. The serial control interface is enabled by the P/S pin = "L". In this mode, internal registers may be either written to or read by the 4 wire uP interface pins: \overline{CS} , CCLK, CDTI & CDTO. The data on this interface consists of Chip address (2bits, C0/1) Read/Write (1bit), Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data is clocked in on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is latched after the 16th rising edge of CCLK, after a high-to-low transition of \overline{CS} . For read operations, the CDTO output goes high impedance after a low-to-high transition of \overline{CS} . The operation of the control serial port may be completely asynchronous with the audio sample rate.

The chip address is determined by the state of the CAD0 and CAD1 inputs. $\overline{PD} = L$ resets the registers to their default values.

Figure 8. Control I/F Timing

Register Map

Dai	asneer	-U.COM								
	Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
	00H	Control 1	0	TM1	TM0	ZCD	DIF1	DIF0	OCKS	MUTE
	01H	Control 2	0	0	LOOP1	LOOP0	SDOS	DFS	DEM1	DEM0
	02H	LOUT1 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	03H	ROUT1 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	04H	LOUT2 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	05H	ROUT2 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	06H	LOUT3 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	07H	ROUT3 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	08H	Volume Status	0	0	R3	L3	R2	L2	R1	L1

Note: For addresses from 09H to 1FH, data is not written and only "0" is read back.

 \overline{PD} = "L", resets the registers to their default values.

Register Definitions

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	Control 1	0	TM1	TM0	ZCD	DIF1	DIF0	OCKS	MUTE
	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	RESET	0	1	0	0	0	0	0	0

MUTE: DAC mute control

0: Normal operation

1: DAC outputs muted

MUTE causes all DAC outputs to be muted. The registers of each volume setting are preserved during mute and the DAC outputs return to their previous volume setting after MUTE is programmed "L". Muting is done according to the ZCD, TM1 and TM0 register settings.

OCKS: Output Clock Frequency Select

0: MCKO = master clock 1: MCKO = master clock / 2 Register bit is ORed with OCKS pin if $P/\overline{S} = "L"$.

DIF1-0: Audio data interface modes (see Table 4)

- 00: Mode 0
- 01: Mode 1
- 10: Mode 2
- 11: Mode 3

ZCD: Zero crossing disable

- 0: DAC attenuation changes occur only on zero-crossing or after timeout.
- 1: DAC attenuation changes occur immediately.

TM1-0: Zero crossing time out period select

00: 256/fs 01: 512/fs 10: 1024/fs 11: 2048/fs

www.Dat	a Alddr t4	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
	01H	Control 2	0	0	LOOP1	LOOP0	SDOS	DFS	DEM1	DEM0
		R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
		RESET	0	0	0	0	0	0	0	0

DFS, DEM1-0: De-emphasis response

000: 44.1kHz 001: OFF 010: 48kHz 011: 32kHz 100: OFF 101: OFF 110: 96kHz 111: OFF Register bits are ORed with DFS, DEM1, DEM0 pins if P/S = "L". ADC is poewered down at DFS = "1".

SDOS: SDTO source select

0: ADC \rightarrow SDTO 1: DAUX/De-emphasis \rightarrow SDTO Register bit is ORed with SDOS pin if P/S = "L".

LOOP1-0: Loopback mode enable

```
00: Normal (No loop back)
01: LIN → LOUT1, LOUT2, LOUT3
RIN → ROUT1, ROUT2, ROUT3
The digital ADC output is connected to the digital DAC input. In this mode, SDTO is output by
SDOS and the input DAC data to SDTI1-3 is ignored. In 96kHz mode the ADC output to DAC input
goes to all "0".
10 SDTI1(L) → SDTI2(L), SDTI3(L)
SDTI1(R) → SDTI2(R), SDTI3(R)
In this mode the input DAC data SDTI2 and SDTI3 is ignored.
11: N/A
```

When the audio format is set mode 1 at loopback mode, the audio format of SDTO becomes mode 3.

www.Dat	a Alddr t4	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
	02H	LOUT1 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	03H	ROUT1 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	04H	LOUT2 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	05H	ROUT2 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	06H	LOUT3 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
	07H	ROUT3 Volume Control	0	0	0	ATT4	ATT3	ATT2	ATT1	ATT0
		R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
		RESET	0	0	0	0	0	0	0	0

ATT4-0: Attenuation level

00000: 0dB 00001: -1dB 00010: -2dB ↓ 10011: -19dB 10100: -20dB 10100: Mute ↓ 10111: Mute

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
08H Volume Status		0	0	R3	L3	R2	L2	R1	L1
	R/W	R	R	R	R	R	R	R	R
	RESET	0	0	0	0	0	0	0	0

L3-1, R3-1: Attenuation change status

0: Attenuation level changed

1: Waiting for zero-crossing or timeout

SYSTEM DESIGN

Figure 9 shows the system connection diagram. An evaluation board is available which demonstrates application circuits, the optimum layout, power supply arrangements and measurement results.

Figure 9. Typical Connection Diagram

If pins XTS, ICKS0, ICKS1, PD, P/S, DFS, DEM0, DEM1, CAD0, CAD1, M/S, OCKS, SDOS are not driven, then XTS, ICKS0, ICKS1, CAD0, CAD1 MUST BE tied either AVSS or AVDD. PD, P/S, DFS, DEM0, DEM1, M/S, OCKS, SDOS must be tied either DVSS or DVDD.

1. Grounding and Power Supply Decoupling

www.DataSheet4U.com

The AK4526A requires careful attention to power supply and grounding arrangements. AVDD and DVDD are usually supplied from analog supply in system. Alternatively if AVDD and DVDD are supplied separately, the power up sequence is not critical. AVSS and DVSS of the AK4526A should be connected to analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4526A as possible, with the small value ceramic capacitor being the nearest.

2. Voltage Reference Inputs

The differential voltage between VREFH and VREFL sets the analog input/output range. VREFH pin is normally connected to AVDD with a 0.1uF ceramic capacitor and VREFL pin is connected to AVSS. VCOM is a signal ground of this chip. An electrolytic capacitor 10uF parallel with a 0.1uF ceramic capacitor attached to VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from VCOM pin. All signals, especially clocks, should be kept away from the VREFH, VREFL and VCOM pins in order to avoid unwanted coupling into the AK4526A.

3. Analog Inputs

The ADC inputs are differential and internally biased to the common voltage (AVDD/2) with $30k\Omega$ (typ) resistance. Figure 10 is a circuit example which analog signal is input by single end. The signal can be input from either positive or negative input and the input signal range scales with the supply voltage and nominally 0.6 x (VREFH-VREFL) Vpp. In case of single ended input, the distortion around full scale degrades compared with differential input. Figure 11 is a circuit example which analog signal is input to both positive and negative input and the input signal range scales with the supply voltage and nominally 0.3 x (VREFH-VREFL) Vpp. The AK4526A can accept input voltages from AVSS to AVDD. The ADC output data format is 2's complement. The output code is 7FFFFH(@20bit) for input above a positive full scale and 80000H(@20bit) for input below a negative fill scale. The ideal code is 00000H(@20bit) with no input signal. The DC offset is removed by the internal HPF.

The AK4526A samples the analog inputs at 64fs. The digital filter rejects noise above the stop band except for multiples of 64fs. A simple RC filter (fc=150kHz) may be used to attenuate any noise around 64fs and most audio signals do not have significant energy at 64fs.

Figure 10. Single End Input Example

Figure 11. Differential Input Buffer Example

4. Analog Outputs

The analog outputs are also single-ended and centered around the VCOM voltage. The input signal range scales with the supply voltage and nominally 0.6 x (VREFH-VREFL) Vpp. The DAC input data format is 2's complement. The output voltage is a positive full scale for 7FFFH(@20bit) and a negative full scale for 80000H(@20bit). The ideal output is VCOM voltage for 00000H(@20bit). The internal analog filters remove most of the noise generated by the delta-sigma modulator of DAC beyond the audio passband.

DC offsets on analog outputs are eliminated by AC coupling since DAC outputs have DC offsets of a few mV.

Layout Example

www.DataSheet4U.com

Figure 12 shows a layout example in the following condition.

External clock mode, Slave mode and Serial control mode with Address "00".

Figure 12. Layout example

■ Peripheral I/F Example

www.DataSheet4U.com

The AK4526A can accept the signal of device with a nominal 3.3V supply because of TTL input. However as the digital output level is 5V, the peripheral device must accept 5V signal when the device operate at a nominal 3.3V supply. Figure 13 shows an example with the mixed system of 3.3V and 5V.

Figure 13. Power supply connection example

Applications

1) Zoran AC3 decoder, ZR38500

2) Zoran AC3 decoder, ZR38600

3) Yamaha AC3 decoder, YSS912

PACKAGE

www.DataSheet4U.com

44pin LQFP (Unit: mm)

Package & Lead frame material

Package molding compound:	Epoxy
Lead frame material:	Cu
Lead frame surface treatment:	Solder plate

MARKING

www.DataSheet4U.com

5) Asahi Kasei Logo

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
 - (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
 - (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.