
6B273

8-BIT LATCHED DMOS POWER DRIVER

The A6B273KA and A6B273KLW combine eight (positive-edge-triggered D-type) data latches and DMOS outputs for systems requiring relatively high load power. Driver applications include relays, solenoids, and other medium-current or high-voltage peripheral power loads. The CMOS inputs and latches allow direct interfacing with microprocessor-based systems. Use with TTL may require appropriate pull-up resistors to ensure an input logic high.

The DMOS output inverts the DATA input. All of the output drivers are disabled (the DMOS sink drivers turned OFF) with the CLEAR input low. The A6B273KA/KLW DMOS open-drain outputs are capable of sinking up to 500 mA. Similar devices with reduced $r_{DS(on)}$ are available as the A6273KA/KLW.

The A6B273KA is furnished in a 20-pin dual in-line plastic package. The A6B273KLW is furnished in a 20-lead wide-body, small-outline plastic package (SOIC) with gull-wing leads for surface-mount applications. Copper lead frames, reduced supply current requirements, and low on-state resistance allow both devices to sink 150 mA from all outputs continuously, to ambient temperatures over 85°C.

Note that the A6B273KA (DIP) and the A6B273KLW (SOIC) are electrically identical and share a common terminal number assignment.

ABSOLUTE MAXIMUM RATINGS at $T_A = 25^{\circ}C$

Output Voltage, V _O 50 V
Output Drain Current,
Continuous, I _O 150 mA*
Peak, I _{OM} 500 mA†
Single-Pulse Avalanche Energy,
E _{AS} 30 mJ
Logic Supply Voltage, V _{DD} 7.0 V
Input Voltage Range,
V _I 0.3 V to +7.0 V
Package Power Dissipation,
P _D See Graph
Operating Temperature Range,
T _A 40°C to +125°C
Storage Temperature Range,
T _S 55°C to +150°C
* Each output, all outputs on.

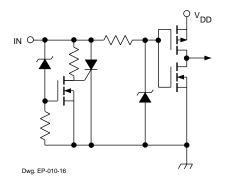
† Pulse duration $\leq 100 \,\mu s$, duty cycle $\leq 2\%$.

Caution: These CMOS devices have input static protection (Class 3) but are still susceptible to damage if exposed to extremely high static electrical charges.

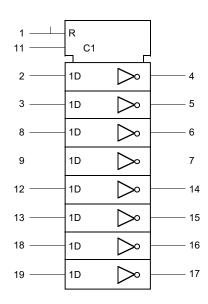
FEATURES


- 50 V Minimum Output Clamp Voltage
- 150 mA Output Current (all outputs simultaneously)
- \blacksquare 5 Ω Typical $r_{DS(on)}$
- Low Power Consumption
- Replacements for TPIC6B273N and TPIC6B273DW

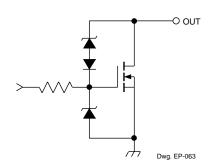
Selection Guide


Part Number	Pb-free*	Package	Packing	R _{θJA} (°C/W)	R _{θJC} (°C/W)
A6B273KLW-T	Yes	20-pin SOICW	37 per tube	70	17
A6B273KLWTR-T	Yes	20-pin SOICW	1000 per reel	70	17

*Pb-based variants are being phased out of the product line. Some variants cited in this footnote are in production but have been determined to be LAST TIME BUY or NOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications. The variants should not be purchased for new design applications because obsolescence in the near future is probable. Samples are no longer available. Status change for LAST TIME BUY: October 31, 2006. Deadline for receipt of LAST TIME BUY orders: April 27, 2007. These variants include: A6B273KLW and A6B273KLWTR. Status change for NOT FOR NEW DESIGN: May 1, 2006. These variants include: A6B273KA.



Dwg. GS-004B



LOGIC INPUTS

LOGIC SYMBOL

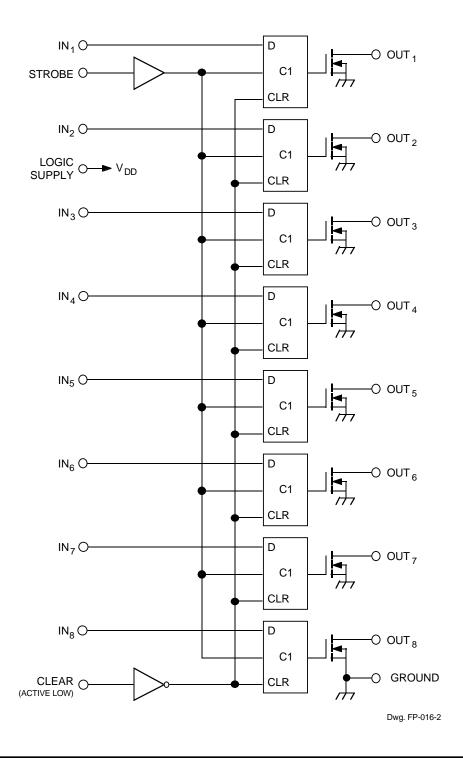
Dwg. FP-046-1A

DMOS POWER DRIVER OUTPUT

FUNCTION TABLE

CLEAR	Inputs STROBE	IN _X	OUT _X
L	Х	Χ	Н
Н		Н	L
Н		L	Н
Н	L	Χ	R

L = Low Logic Level


H = High Logic Level

X = Irrelevant

R = Previous State

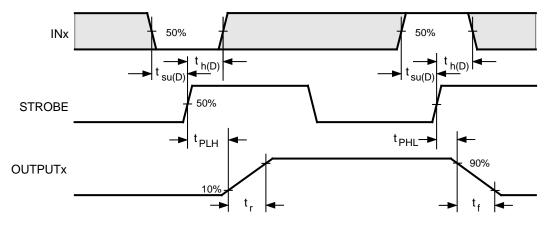
FUNCTIONAL BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

over operating temperature range

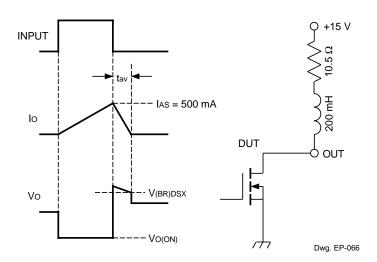
Logic Supply Voltage Range, V _{DD}	4.5 V to 5.5 V
High-Level Input Voltage, VIH	≥ 0.85V _{DD}
Low-level input voltage, V _{II}	≤0.15V _{DD}

ELECTRICAL CHARACTERISTICS at T_A = +25°C, V_{DD} = 5 V, t_{ir} = $t_{if} \le$ 10 ns (unless otherwise specified).


			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Logic Supply Voltage	V_{DD}	Operating	4.5	5.0	5.5	V
Output Breakdown Voltage	$V_{(BR)DSX}$	I _O = 1 mA	50	_	_	V
Off-State Output	I _{DSX}	V _O = 40 V, V _{DD} = 5.5 V	_	0.1	5.0	μА
Current		V _O = 40 V, V _{DD} = 5.5 V, T _A = 125°C		0.15	8.0	μА
Static Drain-Source	r _{DS(on)}	I _O = 100 mA, V _{DD} = 4.5 V	_	4.2	5.7	Ω
On-State Resistance		I _O = 100 mA, V _{DD} = 4.5 V, T _A = 125°C		6.8	9.5	Ω
		I _O = 350 mA, V _{DD} = 4.5 V (see note)	_	5.5	8.0	Ω
Nominal Output Current	I _{ON}	V _{DS(on)} = 0.5 V, T _A = 85°C	_	90	_	mA
Logic Input Current	I _{IH}	V _I = V _{DD} = 5.5 V	_	_	1.0	μΑ
	I _{IL}	V _I = 0, V _{DD} = 5.5 V	_	_	-1.0	μА
Prop. Delay Time	t _{PLH}	I _O = 100 mA, C _L = 30 pF	_	150		ns
	t _{PHL}	I _O = 100 mA, C _L = 30 pF	_	90	_	ns
Output Rise Time	t _r	I _O = 100 mA, C _L = 30 pF	_	200		ns
Output Fall Time	t _f	I _O = 100 mA, C _L = 30 pF	_	200		ns
Supply Current	I _{DD(OFF)}	V _{DD} = 5.5 V, Outputs off	_	20	100	μΑ
	I _{DD(ON)}	V _{DD} = 5.5 V, Outputs on		150	300	μΑ

Typical Data is at $V_{DD} = 5 \text{ V}$ and is for design information only.

NOTE — Pulse test, duration $\leq 100 \,\mu s$, duty cycle $\leq 2\%$.


TIMING REQUIREMENTS

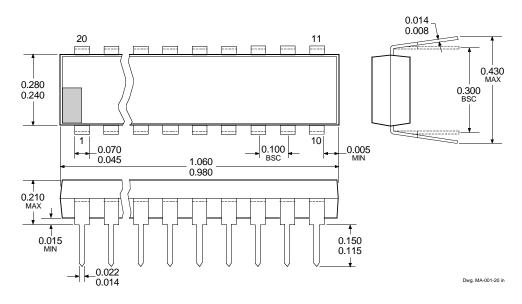
Dwg. WP-036-1

nt Active Time Before Strobe	
Data Set-Up Time), t _{su(D)}	ns
at Active Time After Strobe	
Data Hold Time), t _{h(D)} 20	ns
it Pulse Width, t _{w(D)}	ns
at Logic High, V_{IH} \geq 0.85V	СC
at Logic Low, V_{IL} \leq 0.15V	CC

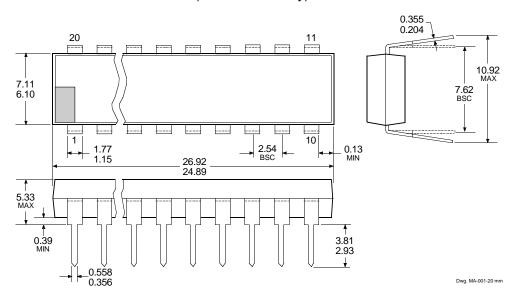
TEST CIRCUITS

Single-Pulse Avalanche Energy Test Circuit and Waveforms

 $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{AV}/2$

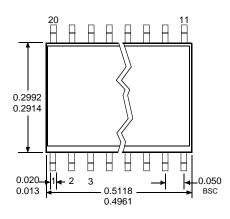

TERMINAL DESCRIPTIONS

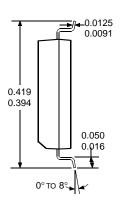
Terminal No.	Terminal Name	Function
1	CLEAR	When (active) LOW, all latches are reset and all outputs go HIGH (turn OFF).
2	IN_1	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₁ = HIGH, OUT ₁ = LOW).
3	IN ₂	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₂ = HIGH, OUT ₂ = LOW).
4	OUT_1	Current-sinking, open-drain DMOS output.
5	OUT_2	Current-sinking, open-drain DMOS output.
6	OUT_3	Current-sinking, open-drain DMOS output.
7	OUT_4	Current-sinking, open-drain DMOS output.
8	IN_3	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₃ = HIGH, OUT ₃ = LOW).
9	IN ₄	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₄ = HIGH, OUT ₄ = LOW).
10	GROUND	Reference terminal for all voltage measurements.
11	STROBE	A CMOS dynamic input to all latches. Data on each IN_x terminal is loaded into its associated latch on a low-to-high STROBE transition.
12	IN ₅	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₅ = HIGH, OUT ₅ = LOW).
13	IN ₆	CMOS data input to a latch. When strobed, the output then inverts the data input ($IN_6 = HIGH$, $OUT_6 = LOW$).
14	OUT ₅	Current-sinking, open-drain DMOS output.
15	OUT ₆	Current-sinking, open-drain DMOS output.
16	OUT ₇	Current-sinking, open-drain DMOS output.
17	OUT ₈	Current-sinking, open-drain DMOS output.
18	IN ₇	CMOS data input to a latch. When strobed, the output then inverts the data input (IN $_7$ = HIGH, OUT $_7$ = LOW).
19	IN ₈	CMOS data input to a latch. When strobed, the output then inverts the data input (IN $_8$ = HIGH, OUT $_8$ = LOW).
20	LOGIC SUPPLY	(V _{DD}) The logic supply voltage (typically 5 V).

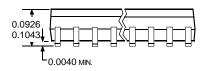


A6B273KA

Dimensions in Inches (controlling dimensions)

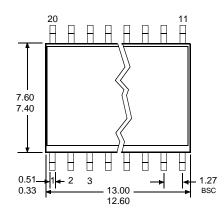

Dimensions in Millimeters (for reference only)

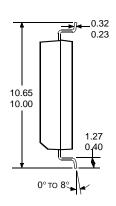


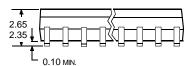

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Lead thickness is measured at seating plane or below.
 - 4. Supplied in standard sticks/tubes of 18 devices.

A6B273KLW

Dimensions in Inches (for reference only)







Dwg. MA-008-20 in

Dimensions in Millimeters (controlling dimensions)

Dwg. MA-008-20 mm

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Supplied in standard sticks/tubes of 37 devices or add 'TR' to part number for tape and reel.

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

POWER INTERFACE DRIVERS

Function	Output Ratings*		Part Number [†]		
SERIAL-INPUT LATCHED DRIVERS					
8-Bit (saturated drivers)	-120 mA	50 V‡	5895		
8-Bit	350 mA	50 V	5821		
8-Bit	350 mA	80 V	5822		
8-Bit	350 mA	50 V‡	5841		
8-Bit	350 mA	80 V‡	5842		
8-Bit (constant-current LED driver)	75 mA	17 V	6275		
8-Bit (constant-current LED driver)	120 mA	24 V	6277		
8-Bit (DMOS drivers)	250 mA	50 V	6595		
8-Bit (DMOS drivers)	350 mA	50 V‡	6A595		
8-Bit (DMOS drivers)	100 mA	50 V	6B595		
10-Bit (active pull-downs)	-25 mA	60 V	5810-F and 6810		
12-Bit (active pull-downs)	-25 mA	60 V	5811		
16-Bit (constant-current LED driver)	75 mA	17 V	6276		
20-Bit (active pull-downs)	-25 mA	60 V	5812-F and 6812		
32-Bit (active pull-downs)	-25 mA	60 V	5818-F and 6818		
32-Bit	100 mA	30 V	5833		
32-Bit (saturated drivers)	100 mA	40 V	5832		
PARALLEL-INPUT LATCHED DRIVERS					
4-Bit	350 mA	50 V‡	5800		
8-Bit	-25 mA	60 V	5815		
8-Bit	350 mA	50 V‡	5801		
8-Bit (DMOS drivers)	100 mA	50 V	6B273		
8-Bit (DMOS drivers)	250 mA	50 V	6273		
SPECIAL-PURPOSE DEVICES					
Unipolar Stepper Motor Translator/Driver	1.25 A	50 V‡	5804		
Addressable 8-Bit Decoder/DMOS Driver	250 mA	50 V	6259		
Addressable 8-Bit Decoder/DMOS Driver	350 mA	50 V‡	6A259		
Addressable 8-Bit Decoder/DMOS Driver	100 mA	50 V	6B259		
Addressable 28-Line Decoder/Driver	450 mA	30 V	6817		

^{*} Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits. Negative current is defined as coming out of (sourcing) the output.

[†] Complete part number includes additional characters to indicate operating temperature range and package style.

[‡] Internal transient-suppression diodes included for inductive-load protection.