256K x 8 Static RAM Module

Features

- High-density 2-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- Low active power
-5.3W (max.)
- SMD technology
- Separate data I/O
- 60-pin ZIP package
- TTL-compatible inputs and outputs
- Low profile
—Max. height of 0.5 in .
- Small PCB footprint
-1.14 sq. in.

Functional Description

The CYM1441 is a very high performance 2-megabit static RAM module organized as 256 K words by 8 bits. The module is constructed using eight $256 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted onto an epoxy laminate substrate with pins. Two chip selects ($\overline{C S}_{L}$ and $\overline{C S}_{U}$) are used to independently enable the upper and lower 4 bits of the data word. Writing to the memory module is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input pins (DI_{0} through DI_{7}) is written into the memory location specified on the address pins (A_{0} through $\left.\mathrm{A}_{17}\right)$. Reading the device is accomplished by taking chip select (CS) LOW while write enable (WE) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data output pins $\left(\mathrm{DO}_{0}\right.$ through $\left.\mathrm{DO}_{7}\right)$. The data output pins remain in a highimpedance state unless the module is selected and write enable ($\overline{\mathrm{WE}}$) is HIGH. Two pins (PD_{0} and PD_{1}) are used to identify module memory density in applications where alternate versions of the JEDEC-standard modules can be interchanged.

Logic Block Diagram

Pin Configuration ZIP

Selection Guide

	$\mathbf{1 4 4 1 - 2 0}$	$\mathbf{1 4 4 1 - 2 5}$	$\mathbf{1 4 4 1 - 3 5}$	$\mathbf{1 4 4 1 - 4 5}$
Maximum Access Time (ns)	20	25	35	45
Maximum Operating Current (mA)	960	960	960	960
Maximum Standby Current (mA)	320	320	320	320

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied. \qquad
Supply Voltage to Ground Potential \qquad $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.-0.5 V to +7.0 V

DC Voltage Applied to Outputs
in High Z State.. 0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V
Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-80	+80	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-50	+50	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}$		960	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{C S}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		320	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		160	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	60	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Notes:

1. $\quad \mathrm{V}_{\mathrm{IN}}$ (min.) $=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. Tested on a sample basis.

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1441-20		1441-25		1441-35		1441-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	20		25		35		45		ns
t_{AA}	Address to Data Valid		20		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\overline{C S}}$ LOW to Data Valid		20		25		35		45	ns
t LZCS	$\overline{\text { CS LOW to Low Z }}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4]}$		12		15		25		30	ns
t_{PU}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CS}}$ HIGH to Power-Down		20		25		35		45	ns
WRITE CYCLE ${ }^{[5]}$										
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	20		25		35		45		ns
tscs	$\overline{\mathrm{CS}}$ LOW to Write End	15		20		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	15		20		30		35		ns
t_{HA}	Address Hold from Write End	2		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		2		ns
tPWE	WE Pulse Width	15		20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	13		15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
tLZWE	$\overline{\text { WE HIGH to Low Z }}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[4]}$	0	13	0	15	0	20	0	25	ns

Shaded area contains preliminary information.

Switching Waveforms

Read Cycle No. 1

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. $t_{H Z C S}$ and $t_{H Z W E}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. WE is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 (CS Controlled) ${ }^{[5,9]}$

Notes:

8. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
9. If CS goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	WE	Input/Output	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
20	CYM1441PZ-20C	PZ04	60-Pin ZIP Module	Commercial
25	CYM1441PZ-25C	PZ04	60-Pin ZIP Module	Commercial
35	CYM1441PZ-35C	PZ04	60-Pin ZIP Module	Commercial
45	CYM1441PZ-45C	PZ04	60-Pin ZIP Module	Commercial

Shaded area contains preliminary information.

Package Diagrams

60-Pin ZIP Module PZ04

DIMENSIONS IN INCHES
MIN.
MAX.

Document Title: CYM1441 256K x 8 Static RAM Module				
Document Number: 38-05271				

