Am2168/Am2169

4096 X 4 Static R/W Random-Access Memory

DISTINCTIVE CHARACTERISTICS

- High speed access times as fast as 40 ns
- Fully static storage and interface circuitry
- No clocks or timing signals required
- Automatic power down when deselected (Am2168)
- Power dissipation
 - Am2168: 660 mW active, 165 mW standby Am2169: 660 mW
- Standard 20-pin, .300 inch dual-in-line package
- Standard 20-pin rectangular ceramic leadless chip carrier
- · High output drive
 - Up to seven standard TTL loads or six Schottky TTL loads
- TTL-compatible interface levels

GENERAL DESCRIPTION

The Am2168 and Am2169 are high-performance, static, N-channel, read/write, random-access memories organized as 4096 words of 4 bits. Operation is from a single 5 V supply, and all input/output levels are identical to standard TTL specifications. The Am2168 and Am2169 are the same except that the Am2168 offers an automatic Chip Enable (\overline{CE}) power-down feature.

The Am2168 remains in a low-power standby mode as long as CE remains HIGH, thus reducing its power requirements from 660 mW to 165 mW maximum.

The data read out is not destructive and has the same polarity as the input data. The device is packaged in either a .300 slim DIP or 20-pin leadless chip carrier. The outputs of similar devices can be OR-tied and easy selection obtained by use of the $\overline{\text{CE}}$.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Part Number Maximum Access Time (ns)		Am2168-35	Am2168-45	Am2169-40	Am2168-55	Am2169-50	Am2168-70	Am2169-70	
		35	45	40	55	50	70		
0 to +70°C	ICC (mA)	120	120	120	120 120		120	120	
	I _{SB} * (mA)	30	30	N/A	30	N/A	30	N/A	
-55 to + 125°C	ICC (mA)	N/A	160	N/A	160	160	160	160	
-35 10 + 125 0	I _{SB} * (mA)	N/A	30	N/A	30	N/A	30	N/A	

*Am2168

Flashrite is a trademark of Advanced Micro Devices Inc.

Address [Address Designators								
External	Internal								
A ₀	Ao								
A ₁	A ₁								
A ₂	A ₂								
Ag	A3								
A4	A4								
A5	A5								
A ₆	A ₆								
A7	A7								
A ₈	A ₈								
Ag	A ₁₁								
A ₁₀	A ₁₀								
A ₁₁	A ₉								

METALLIZATION AND PAD LAYOUT

Die Size: 0.123" x 0.252"

🖩 8077984 0000064 201 📰

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number

Valid Combinations list configurations planned to be supported in volume for this device. Consult MSIS sales department to confirm availability of specific valid combinations, and to obtain additional data on MSIS's standard military grade products.

8077984 0000065 148

PC, PCB, DC, DCB

AM2168-70

AM2169-70

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by a combination of: **a. Device Number**

Valid C	Omplitations
AM2168-45	
AM2168-55	
AM2169-50	
AM2168-70	
AM2169-70	/BRA, /BUA
AM2168-45	
AM2168-55	
AM2169-50	
AM2168-70	
AM2169-70	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult MSIS sales department to confirm availability of specific valid combinations, and to obtain additional data on MSIS's standard military grade products.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

Ac-A11 Address Inputs (Inputs) The address input lines select the RAM location to be read

- or written. **CE Chip Enable (Input, Active LOW)**
- The Chip Enable selects the memory device.
- WE Write Enable (Input, Active LOW)
- When Write Enable is LOW and Chip Enable is also LOW, data is written into the location specified on the address pins.

I/O1-I/O4 Data In/Out Bus (Bidirectional Active HIGH)

These I/O lines provide the path for data to be read from or written to the selected memory location.

- V_{CC} Power Supply
- V_{SS} Ground

8077984 0000066 084 🔳

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage0.5 V to +7.0 V
All Signal Voltages3.5 V to +7.0 V
DC Output Current
Power Dissipation
Cerdip & Leadless Packages1.2 W
Plastic Packages0.7 W
Ambient Temperature with Power Applied
Cerdip & Leadless Packages55 to +125°C
Plastic Packages 10 to +85°C
Storage Temperature
Cerdip & Leadless Packages65 to +150°C
Plastic Packages55 to +150°C

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

*Maximum ratings are for system design reference; parameters given may not be 100% tested.

OPERATING RANGES (Note 4)

Commercial (C) Devices	
Ambient Temperature (TA)0 to +70°C	
Supply Voltage (V _{CC})4.5 V to +5.5 V	
Military (M) Devices	
Ambient Temperature (T _A)55 to +125°C	
Supply Voltage (V _{CC})+4.5 to +5.5 V	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted) (Note 4)

Parameter	Parameter			Am2168-35, -45, & -40		Am2168-55 & -70 Am2169-50 & -70			
Symbol	Description	Test C	Min.	Max.	Min.	Max.	Unit		
юн	Output HIGH Current	V _{OH} = 2.4 V	V _{CC} = 4.5 V	-4		-4	†	mΑ	
IOL	Output LOW Current	V _{OI} = 0.4 V	COM'L	8		8			
		•0[= 0.4 •	MIL	8	1	8		- mA	
VIH	Input HIGH Voltage		2.2	6.0	2.2	6.0	v		
VIL	Input LOW Voltage	Note 3	-0.5	0.8	-0.5	0.8	ν		
I _{IX}	Input Load Current	$\text{GND} \leqslant \text{V}_{\text{I}} \leqslant \text{V}_{\text{CC}}$	-10	10	- 10	10	μA		
loz	Output Leakage Current	$GND \leq V_O \leq V_{CC}$ Output Disabled	- 50	50	-50	50	μA		
C1	Input Capacitance	Test Frequency = 1.0 M	Hz	5	5		5 pF		
C _{I/O}	Input/Output Capacitance	T _A = 25°C, All Pins at 0 (Note 5)	V, $V_{CC} = 5$ V		7			p⊢	
lcc	V _{CC} Operating Supply Current	Max. V _{CC} , CE ≤ V _{IL}	COM'L		120		120	mA	
		Output Open	MIL	N/A			160	mA	
I _{SB}	Automatic CE Power Down Current	Max. V _{CC} , (CE ≥ V _{iH})	COM'L		30		30	mA	
	(Am2168 Only)		MIL		N/A		30		

Notes: 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. Output timing reference is 1.5 V.

2. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

 ViL voltages of less than -0.5 V on the I/O pins will cause the output current to exceed the maximum rating and thus should not exceed 30 seconds in duration.

4. For test and correlation purposes, ambient temperature is defined as the "Instant-on" case temperature.

5. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} and t_{WZ} is less than t_{OW} for all devices. Transition is measured at 1.5 V on the input to V_{OH} -500 mV and V_{OL} + 500 mV on the outputs using the load shown in B. under Switching Test Circuits. C_L = 5 pF.

6. Not 100% tested parameter; parameter guaranteed by characterization.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (Note 1)

Parameter		Parameter		Am2168-35		Am2168-45, Am2169-40		Am2168-55, Am2169-50		Am2168-70, Am2169-70			
No.		Description			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
RE/	D CYCLE												
1	^t RC	Address Valid to Address Do Not Care (Read Cycle Time)	e Time		35		40		50		70		ns
2	taa	Address Valid to Data Out Valid Delay (Address Access Time)				35		40		50		70	ns
3	tACS	Chip Enable LOW to Data Out Valid	Am2168 Am2169			35		45		55		70	ns
•	700	(Chip Enable Access Time)						20	ļ	25	ļ	30	L
4	чz	Chip Enable LOW to Data Out On	Am2168	(Notes 4,	5		5		5	ļ	5	 	
	12		Am2169	5)			2		2	I	2		
5	ţнz	Chip Enable HIGH to Data Out Off		(Notes 4, 5)	0	20	0	20	0	25	0	30	ns
			COM'L		3		3	[3		3		
0	6 ton cha		MIL				1		1		1		
7	tpD	Chip Enable HIGH to Power-Down Delay	Am2168	(Note 5)		35		45		55		70	ns
8	tPU	Chip Enable LOW to Power-Up Delay Am2168		(Note 5)	0		0		0		0		ns
WR	ITE CYCLE												
9	twc	Address Valid to Address Do Not Care Cycle Time)	e (Write		35		40		50		70		ns
10	twp	Write Enable LOW to Write Enable HIGH		(Note 2)	30		35		45		65		ns
11	twe	Write Enable HiGH to Address Do Not Care			0		0		0		0		ns
12	twz	Write Enable LOW to Output in Hi-Z		(Notes 4, 5)	0	15	0	15	0	20	0	25	ns
13	tow	Data In Valid to Write Enable HIGH		1	20		20	1	25	[35		ns
14	^t DH	Data Hold Time	Data Hold Time		5		5		5		5		ns
15	tAS	Address Valid to Write Enable LOW		1	0		0		0		0		ns
16	tcw	Chip Enable LOW to Write Enable Hit	GH	(Note 2)	30		35		45		65		ns
17	tow	Write Enable HIGH to Output in Low-	z	(Notes 4, 5)	0		0		0		0		ns
18	taw	Address Valid to End of Write		1	30	1	35	T	45	I	65	Τ	ns

SWITCHING TEST CIRCUITS

B. Output Load for t_{HZ}, t_{LZ}, t_{OW}, t_{WZ}

SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORMS

Read Cycle No. 2 (WE HIGH, Address Valid Prior to CE Transition to LOW)

SWITCHING WAVEFORMS (Cont'd.)

Write Cycle No. 1 (WE Controlled)

 $\label{eq:weight} \begin{array}{c} \mbox{Write Cycle No. 2 (\overline{CE} Controlled$)} \\ \mbox{Note: If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.} \end{array}$

8077984 0000070 505 🖿

TYPICAL PERFORMANCE CURVES

OP002040

OP002050

OP002060