
The RF Line Microwave Power Transistors

... designed primarily for large–signal output and driver amplifier stages in the 1.5 to 3.0 GHz frequency range.

- Designed for Class B or C, Common Base Linear Power Amplifiers
- Specified 28 Volt, 3.0 GHz Characteristics: Output Power — 1.0 to 5.0 Watts Power Gain — 5.0 to 7.0 dB Min Collector Efficiency — 30% Min
- Gold Metallization for Improved Reliability
- Diffused Ballast Resistors
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRW3001 MRW3003 MRW3005

5.0-7.0 dB 1.5-3.0 GHz 1.0-5.0 WATTS MICROWAVE POWER TRANSISTORS

CASE 328A-03, STYLE 1 (GP-13) MRW3001, 3003, 3005

MAXIMUM RATINGS

Rating	Symbol	3001	3003	3005	Unit
Collector–Base Voltage	VCBO	45			Vdc
Emitter–Base Voltage	VEBO	3.5			Vdc
Operating Junction Temperature	Тj	200			°C
Storage Temperature Range	T _{stg}	-65 to +200			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max			Unit
Thermal Resistance, RF, Junction to Case	R _θ JC	35	17	8.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage (I _C = 10 mA, V _{BE} = 0) (I _C = 30 mA, V _{BE} = 0) (I _C = 50 mA, V _{BE} = 0)	MRW3001 MRW3003 MRW3005	V _(BR) CES	50 50 50			Vdc
Collector–Base Breakdown Voltage ($I_C = 1.0 \text{ mA}, I_E = 0$) ($I_C = 3.0 \text{ mA}, I_E = 0$) ($I_C = 5.0 \text{ mA}, I_E = 0$)	MRW3001 MRW3003 MRW3005	V _(BR) CBO	45 45 45			Vdc
Emitter–Base Breakdown Voltage $(I_E = 1.0 \text{ mA}, I_C = 0)$		V _{(BR)EBO}	3.5	—	-	Vdc
Collector Cutoff Current ($V_{CB} = 28 V, I_E = 0$)	MRW3001 MRW3003 MRW3005	ІСВО			0.5 0.75 1.25	mAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 100 mA, V _{CE} = 5.0 V) (I _C = 300 mA, V _{CE} = 5.0 V) (I _C = 500 mA, V _{CE} = 5.0 V)	MRW3001 MRW3003 MRW3005	hFE	10 10 10		120 120 120	_

(continued)

ELECTRICAL CHARACTERISTICS — continued ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS						
Output Capacitance (V_{CB} = 28 V, I _E = 0, f = 1.0 MHz)	MRW3001 MRW3003 MRW3005	C _{ob}		3.5 5.7 8.4	4.0 7.0 10	pF
FUNCTIONAL TESTS						
Common–Base Amplifier Power Gain ($V_{CE} = 28 \text{ V}, P_{Out} = 1.0 \text{ W}, f = 3.0 \text{ GHz}$) ($V_{CE} = 28 \text{ V}, P_{Out} = 3.0 \text{ W}, f = 3.0 \text{ GHz}$) ($V_{CE} = 28 \text{ V}, P_{Out} = 5.0 \text{ W}, f = 3.0 \text{ GHz}$)	MRW3001 MRW3003 MRW3005	G _{PB}	7.0 6.0 5.0	 	 	dB
Collector Efficiency (V _{CE} = 28 V, P _{out} = 1.0 W, f = 3.0 GHz) (V _{CE} = 28 V, P _{out} = 3.0 W, f = 3.0 GHz) (V _{CE} = 28 V, P _{out} = 5.0 W, f = 3.0 GHz)	MRW3001 MRW3003 MRW3005	ης	30 30 30			%
Load Mismatch ($V_{CE} = 28 \text{ V}, \text{ f} = 3.0 \text{ GHz}, \text{ Load VSWR} = \infty:1, \text{ A}$ $P_{out} = 1.0 \text{ W}$ $P_{out} = 3.0 \text{ W}$ $P_{out} = 5.0 \text{ W}$	All Phase Angles) MRW3001 MRW3003 MRW3005	Ψ	No Degradation in Output Power			

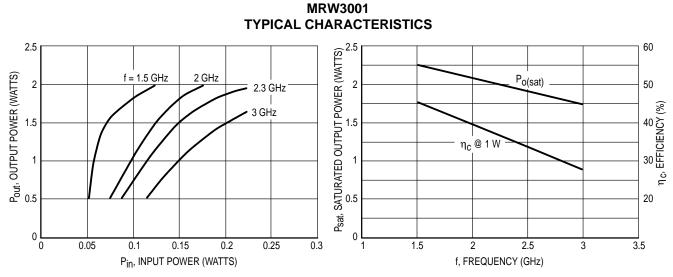


Figure 1. Output Power versus Input Power

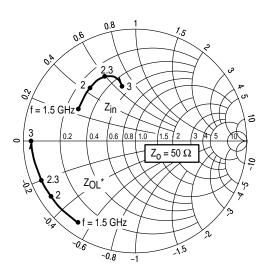


Figure 3. Series Equivalent Input/Output Impedance

MRW3003 TYPICAL CHARACTERISTICS

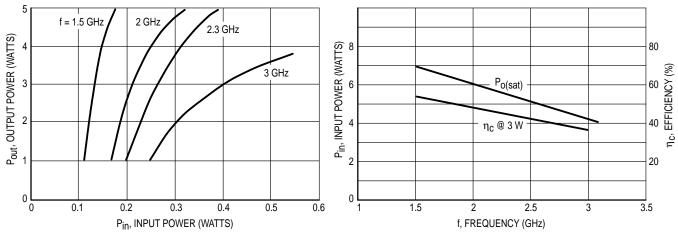


Figure 5. Psat and η versus Frequency

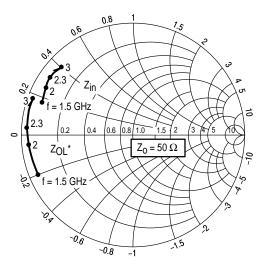


Figure 6. Series Equivalent Input/Output Impedance

MRW3005 TYPICAL CHARACTERISTICS

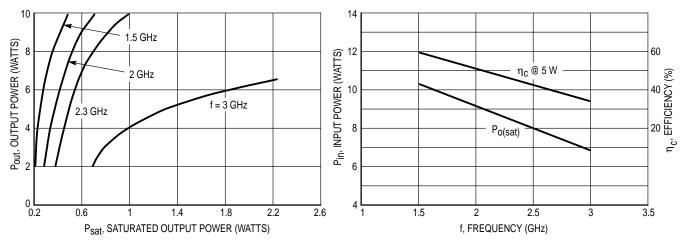


Figure 8. P_{sat} and η versus Frequency

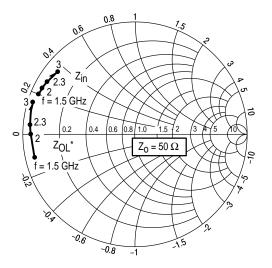
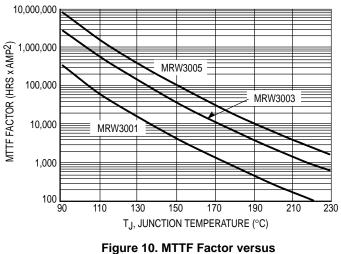



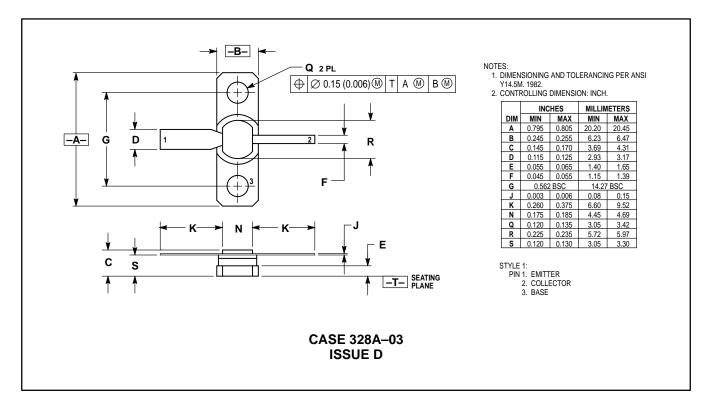
Figure 9. Series Equivalent Input/Output Impedance

Junction Temperature

MTTF Factor (Normalized to 1.0 ampere² Continuous Duty)

The graph shown displays MTTF in hours x ampere² emitter current for each of the 3.0 GHz devices. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ to the theoretical prediction for metal failure. **CAUTION** — A calculation is required to obtain actual metal life. Sample MTTF calculations based on operating conditions are shown below.

Junction Temperature — °C


To calculate metal lifetime under any set of conditions, obtain actual data or estimate from typical performance curves. Solve for T_J (°C):

(1)
$$T_J = \theta_{JF} \left(\frac{P_{out} \times 100}{\eta_c \%} + P_{in} - P_{out} \right) + TFLANGE$$

Enter graph of MTF factor versus TJ. Obtain MTF factor. Calculate metal life by:

(2) Metal Life in Hours = $\frac{\text{MTF Factor}}{\text{I}\text{C}^2 \text{ (Amps)}}$

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employee.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

