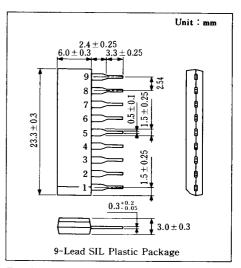
AN7381

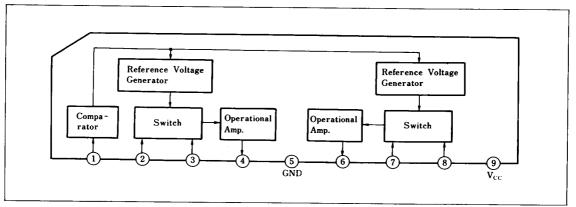
トーンコントロール回路/Tone Control Circuit

■ 概 要


AN7381 は, カー用 ATC 専用 IC で AN7256, AN7258 とキット 使用することによりその特性が生かせます。 また,汎用的にはマニュアル動作でトーンコントロールが可能で す。

■特 徴

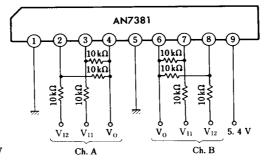
- ●単連ボリュームで2ch 分の音質調整ができる
- ●自動トーンコントロール (ATC) が可能
- ●動作電源電圧範囲が広い: V_{cc}=5 V~12 V
- ●低雑音,低歪率
- ●チャンネルバランスが良い
- ●出力 OFF セット電圧が小さい


Features

- •2-channel tone controlled by single variable resistor control
- Control available by automatic tone control (ATC) input terminal
- Wide supply voltage range : $V_{CC} = 5$ to 12V
- Low noise and low distortion
- Good channel balance
- Small output offset voltage

■ 端子名/Pin

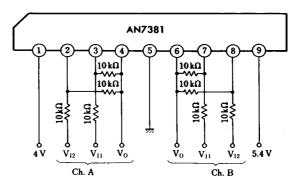
Pin No.	端 子 名	Pin Name
1	ATC	Auto. Tone Control
2	入力-2Ch.A	Input-2 Ch. A
3	入力-1Ch.A	Input-1 Ch. A
4	出力 Ch.A	Output Ch.A
5	アース	GND
6	出力 Ch.B	Output Ch.B
7	入力 - 1 Ch.B	Input – 1 Ch. B
8	入力 - 2 Ch.B	Input – 2 Ch. B
9	電源電圧	V _{cc}


■ 絶対最大定格/Absolute Maximum Ratings(Ta=25°C)

Item	Symbol	Rating	Unit
電源電圧	V _{cc}	18	v
許容損失	PD	300	mW
動作周囲温度	T _{opr}	-30~+80	•C
保存温度	T _{stg}	-55~+150	°C

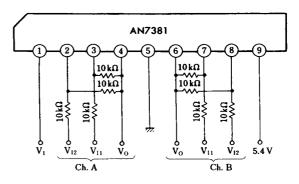
■ 電気的特性/Electrical Characteristics (V_{CC}=5.4V, Ta=25°C)

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
トーンコントロール量	V _{TC1}	1	注1)	0.88	1.00	1.13	v
	V _{TC2}	2	注2)	0.88	1.00	1.13	v
トーンコントロール量	V _{TC3}	1	注1)	0.12	0.00	0.12	v
トーンコントロール量	V _{TC4}	2	注2)	0.12	0.00	0.12	v
ATC コントロール量(1)	V _{ATC1}	3	注3)	0.88	1.00	1.13	v
ATC コントロール量(2)	VATC2	3	注3)	0.12	0.00	0.12	v
チャンネルバランス	СВ	4	注4)	-1.94	0	1.58	dB
チャンネルセパレーション	Sep	4	注5)	-60	-65		dB
全高調波歪率	THD	4	$V_1 = 150 \text{ mV}, 1 \text{ kHz}$ (400 Hz ~ 20 kHz BPF)		0.03	0.1	%
	V _{1(max)}	4	f=1 kHz, THD=1%	0.5		-	v
出力雑音電圧	Vno	4	$V_I \epsilon T - \chi \tau \delta f = 20 Hz - 20 kHz$		26	35	μV
全回路電流	Itot	4			6	10	mA
出力端子オフセット	V _{O(offset)}	3	注6)		10	15	mV
入力インピーダンス	Zi	1	4-2, 4-3, 6-7, 6-8	200			kΩ


Test Circuit 1 (V_{TC1}, V_{TC3}, Z_i)

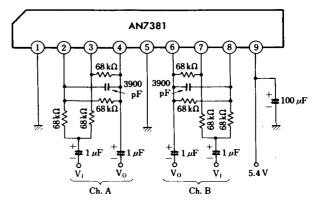
注1) V₁₂=2.5VにしてV₁₁を3Vから2V にしたときのV₀の変化量

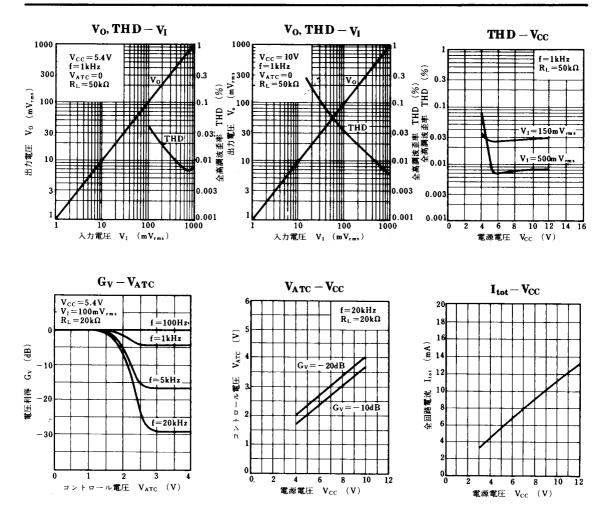
Test Circuit 2 (V_{TC2} , V_{TC4})


注2) V₁₁=2.5VにしてV₁₂を3Vから2V にしたときのVoの変化量

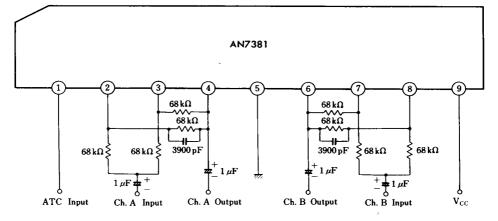
Test Circuit 3 (VATC1, VATC2, VO(offset))

注3) V₁=1.2V, V₁₂=2.5V にしてV₁₁を 3Vから2VにしたときのV₀の変化量


注6) V₁=1-2V からV₁=3.2V に変えたと きのV₀の変動 (V₁₁, V₁₂ は開放)



Test Circuit 4 (CB, Sep, THD, $V_{I(max)}$, V_{no} , I_{tot})


注4) V₁ =150 mV, 1 kHz のときの ch.A, ch.B間の傷差 (ch.A を基準とする)

注5) 一方の入力端へ150mV 1kHz を加え 他方の出力端のもれ

■ 応用回路例/Application Circuit

